Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 462: 140986, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39208737

RESUMO

Harvest season exerts great influence on tea quality. Herein, the variations in non-volatile flavor substances in spring and summer fresh tea leaves of four varieties were comprehensively investigated by integrating UHPLC-Q-Exactive based lipidomics and metabolomics. A total of 327 lipids and 99 metabolites were detected, among which, 221 and 58 molecules were significantly differential. The molecular species of phospholipids, glycolipids and acylglycerolipids showed most prominent and structure-dependent seasonal changes, relating to polar head, unsaturation and total acyl length. Particularly, spring tea contained higher amount in aroma precursors of highly unsaturated glycolipids and phosphatidic acids. The contents of umami-enhancing amino acids and phenolic acids, e.g., theanine, theogallin and gallotannins, were increased in spring. Besides, catechins, theaflavins, theasinensins and flavone/flavonol glycosides showed diverse changes. These phytochemical differences covered key aroma precursors, tastants and colorants, and may confer superior flavor of black tea processed using spring leaves, which was verified by sensory evaluation.


Assuntos
Camellia sinensis , Aromatizantes , Lipidômica , Espectrometria de Massas , Metabolômica , Folhas de Planta , Estações do Ano , Camellia sinensis/química , Camellia sinensis/metabolismo , Folhas de Planta/química , Folhas de Planta/metabolismo , Cromatografia Líquida de Alta Pressão , Aromatizantes/química , Aromatizantes/metabolismo , Humanos , Paladar , Odorantes/análise , Lipídeos/análise , Lipídeos/química
2.
Food Chem ; 458: 140226, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38943961

RESUMO

Shaking constitutes a pivotal technique for enhancing black tea quality; nevertheless, its impact on the transformation mechanism of non-volatile metabolites (NVMs) in black tea remains obscure. The present study aimed to investigate the impact of shaking-withering methods (SWM) and traditional-withering methods (TWM) on black tea quality and NVMs conversion. A total of 57 NVMs and 14 objective quantitative indicators were obtained. SWM enhanced sweetness and umami taste, as well as appearance and liquor color brightness of black tea. Eight key differential NVMs were identified by multivariate statistical and dose over threshold value analysis. Metabolic pathway and evolution law analysis revealed that SWM enhanced the oxidation of catechins and flavonol glycosides, promoted the decarboxylation of glutamic acid, then facilitated the formation of theaflavin-3,3'-digallate, finally enhanced the taste and color quality of black tea. This study offers theoretical guidance and technical support for the targeted processing of high-quality black tea.


Assuntos
Camellia sinensis , Metabolômica , Paladar , Chá , Chá/química , Camellia sinensis/química , Camellia sinensis/metabolismo , Aromatizantes/química , Aromatizantes/metabolismo , Humanos , Manipulação de Alimentos , Catequina/metabolismo , Catequina/química , Catequina/análise , Controle de Qualidade
3.
Food Chem ; 453: 139628, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-38761731

RESUMO

Umami taste is a key criteria of green tea quality evaluation. The aim of this study was to comprehensively explore the key umami taste contributors in Longjing tea. The taste and molecular profiles of 36 Longjing green tea infusions were characterized by sensory quantitative descriptive analysis and LC-MS based metabolomics, respectively. By uni-/multi-variate statistical analysis, 84 differential compounds were screened among tea infusions with varied umami perceptions. Among them, 17 substances were identified as candidate umami-enhancing compounds, which showed significant positive correlations with umami intensities. Their natural concentrations were accurately quantified, and their umami taste-modifying effects were further investigated by taste addition into glutamic acid solution. Glutamic acid, aspartic acid, glutamine, theanine, phenylalanine, histidine, theogallin, galloylglucose, 1,2,6-trigalloylglucose significantly enhanced the umami taste. This study uncovered for the first time of some bitter amino acids and galloylglucose homologous series as important umami-enhancers, which provided a novel perspective into the tea taste.


Assuntos
Camellia sinensis , Metabolômica , Paladar , Chá , Chá/química , Humanos , Camellia sinensis/química , Camellia sinensis/metabolismo , Aromatizantes/química , Aromatizantes/metabolismo , Masculino , Adulto , Espectrometria de Massas , Feminino , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Extratos Vegetais/análise , Cromatografia Líquida de Alta Pressão
4.
Metabolites ; 13(7)2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37512571

RESUMO

Tea's biochemical compounds and flavor quality vary depending on its grade ranking. Dianhong Congou black tea (DCT) is a unique tea category produced using the large-leaf tea varieties from Yunnan, China. To date, the flavor characteristics and critical components of two grades of high-quality DCT, single-bud-grade DCT (BDCT), and special-grade DCT (SDCT) manufactured mainly with single buds and buds with one leaf, respectively, are far from clear. Herein, comparisons of two grades were performed by the integration of human sensory evaluation, an electronic tongue, chromatic differences, the quantification of major components, and metabolomics. The BDCT possessed a brisk, umami taste and a brighter infusion color, while the SDCT presented a comprehensive taste and redder liquor color. Quantification analysis showed that the levels of total polyphenols, catechins, and theaflavins (TFs) were significantly higher in the BDCT. Fifty-six different key compounds were screened by metabolomics, including catechins, flavone/flavonol glycosides, amino acids, phenolic acids, etc. Correlation analysis revealed that the sensory features of the BDCT and SDCT were attributed to their higher contents of catechins, TFs, theogallin, digalloylglucose, and accumulations of thearubigins (TRs), flavone/flavonol glycosides, and soluble sugars, respectively. This report is the first to focus on the comprehensive evaluation of the biochemical compositions and sensory characteristics of two grades of high-quality DCT, advancing the understanding of DCT from a multi-dimensional perspective.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA