Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Curr Probl Cardiol ; 49(7): 102582, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38657722

RESUMO

Left ventricular noncompaction (LVNC) is a rare genetic and congenital disorder characterized by the excessive formation of blood-filled trabeculae and intertrabecular recesses in the uncompressed inner endocardial wall associated with a thin, compact wall, the mesocardium. Although LVNC was described for the first time as long ago as 1984, our understanding of the disease with regard to its genetic pattern, diagnosis, clinical presentation, and treatment is still scanty. LVNC can be present as an isolated condition or associated with congenital heart disease, genetic syndromes, or neuromuscular disease. This suggests that LVNC is not a distinct form of cardiomyopathy, but rather a morphological expression of different diseases. Recognition of the disease is of fundamental importance because its clinical manifestations are variable, ranging from the absence of any symptom to congestive heart failure, lethal arrhythmias, and thromboembolic events. The main cardiac symptoms associated with LVNC are related to HF, occurring in up to half of the patients. Atrial fibrillation can affect 25 % of adult patients and ventricular tachyarrhythmias up to around 50 %. There is a possible association between bradycardia and Wolff-Parkinson-White syndrome in pediatric patients with LVNC. Other frequent manifestations are related to thromboembolic events, such as stroke, pulmonary embolism, and mesenteric ischemia. In asymptomatic patients, LVNC is identified by echocardiography or when the patient is subjected to family screening. However, when the disease is identified during the fetal period, the presence of systemic diseases, such as mitochondrial alterations and metabolic disorders, is frequently reported.

2.
PeerJ ; 11: e16555, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38077432

RESUMO

Background: An important factor contributing to the development and occurrence of post-traumatic epilepsy (PTE) is neuroinflammation and oxidative stress. The effects of celecoxib include inhibiting inflammatory reactions and antioxidant stress and reducing seizures, making it a potential epilepsy treatment solution. Objective: To observe the effect of celecoxib on early epilepsy in post-traumatic epilepsy rats. Methods: Twenty-four adult healthy male Sprague-Dawley rats were randomly assigned to three groups: sham-operated, PTE, and celecoxib. A rat model of PTE was established by injecting ferrous chloride into the right frontal cortex. Afterward, the behavior of rats was observed and recorded. 3.0T superconducting magnetic resonance imaging (MRI) was used to describe the changes in ADC values of the brain. HE and Nissl staining were also used to detect the damage to frontal lobe neurons. Furthermore, the expression of COX-2 protein in the right frontal lobe was detected by Western blot. Moreover, the contents of IL-1 and TNF-α in the right frontal lobe were detected by enzyme-linked immunosorbent assay. Results: Compared with the PTE group, the degree of seizures in rats treated with celecoxib declined dramatically (P < 0.05). Celecoxib-treated rats had significant decreases in tissue structural damage and cell death in the brain. The results of the MRI showed that celecoxib reduced the peripheral edema zone and ADC value of the cortex around the damaged area of the right frontal lobe in the celecoxib-treatment group, which was significantly decreased compared with the PTE group (P < 0.05). Furthermore, celecoxib decreased the expression of COX-2, IL-1ß, and TNF-α in brain tissue (P < 0.05). Conclusions: In PTE rats, celecoxib significantly reduced brain damage and effectively reduced seizures. As a result of celecoxib's ability to inhibit inflammation, it can reduce the edema caused by injury in rat brain tissue.


Assuntos
Lesões Encefálicas , Epilepsia Pós-Traumática , Epilepsia , Ratos , Masculino , Animais , Epilepsia Pós-Traumática/complicações , Celecoxib/farmacologia , Fator de Necrose Tumoral alfa , Ciclo-Oxigenase 2 , Ratos Sprague-Dawley , Lesões Encefálicas/complicações , Convulsões/complicações , Epilepsia/etiologia , Edema/complicações
3.
Insects ; 14(5)2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37233097

RESUMO

MiRNAs, as a kind of key regulators in gene expression, play vital roles in numerous life activities from cellular proliferation and differentiation to development and immunity. However, little is known about the regulatory manner of miRNAs in the development of Asian honey bee (Apis cerana) guts. Here, on basis of our previously gained high-quality transcriptome data, transcriptome-wide identification of miRNAs in the larval guts of Apis cerana cerana was conducted, followed by investigation of the miRNAs' differential expression profile during the gut development. In addition to the regulatory network, the potential function of differentially expressed miRNAs (DEmiRNAs) was further analyzed. In total, 330, 351, and 321 miRNAs were identified in the 4-, 5-, and 6-day-old larval guts, respectively; among these, 257 miRNAs were shared, while 38, 51, and 36 ones were specifically expressed. Sequences of six miRNAs were confirmed by stem-loop RT-PCR and Sanger sequencing. Additionally, in the "Ac4 vs. Ac5" comparison group, there were seven up-regulated and eight down-regulated miRNAs; these DEmiRNAs could target 5041 mRNAs, involving a series of GO terms and KEGG pathways associated with growth and development, such as cellular process, cell part, Wnt, and Hippo. Comparatively, four up-regulated and six down-regulated miRNAs detected in the "Ac5 vs. Ac6" comparison group and the targets were associated with diverse development-related terms and pathways, including cell, organelle, Notch and Wnt. Intriguingly, it was noticed that miR-6001-y presented a continuous up-regulation trend across the developmental process of larval guts, implying that miR-6001-y may be a potential essential modulator in the development process of larval guts. Further investigation indicated that 43 targets in the "Ac4 vs. Ac5" comparison group and 31 targets in the "Ac5 vs. Ac6" comparison group were engaged in several crucial development-associated signaling pathways such as Wnt, Hippo, and Notch. Ultimately, the expression trends of five randomly selected DEmiRNAs were verified using RT-qPCR. These results demonstrated that dynamic expression and structural alteration of miRNAs were accompanied by the development of A. c. cerana larval guts, and DEmiRNAs were likely to participate in the modulation of growth as well as development of larval guts by affecting several critical pathways via regulation of the expression of target genes. Our data offer a basis for elucidating the developmental mechanism underlying Asian honey bee larval guts.

4.
Sci Adv ; 9(18): eade7917, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37134176

RESUMO

Honey bees, Apis mellifera, have for millennia been managed and exploited by humans and introduced into most suitable regions worldwide. However, given the lack of records for many introduction events, treating A. mellifera populations as native would predictably bias genetic studies regarding origin and evolution. Here, we used the Dongbei bee, a well-documented population, introduced beyond the natural distribution range approximately 100 years ago, to elucidate the effects of local domestication on animal population genetic analyses. Strong domestication pressure was detected in this population, and the genetic divergence between Dongbei bee and its ancestral subspecies was found to have occurred at the lineage level. Results of phylogenetic and time divergence analyses could consequently be misinterpreted. Proposing new subspecies or lineages and performing analyses of origin should thus strive to eliminate anthropogenic effects. We highlight the need for definitions of landrace and breed in honey bee sciences and make preliminary suggestions.


Assuntos
Domesticação , Genética Populacional , Humanos , Abelhas/genética , Animais , Filogenia , Deriva Genética
5.
BMC Genomics ; 24(1): 100, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36879226

RESUMO

BACKGROUND: Apis cerana is widely distributed in China and, prior to the introduction of western honeybees, was the only bee species kept in China. During the long-term natural evolutionary process, many unique phenotypic variations have occurred among A. cerana populations in different geographical regions under varied climates. Understanding the molecular genetic basis and the effects of climate change on the adaptive evolution of A. cerana can promote A. cerana conservation in face of climate change and allow for the effective utilization of its genetic resources. RESULT: To investigate the genetic basis of phenotypic variations and the impact of climate change on adaptive evolution, A. cerana workers from 100 colonies located at similar geographical latitudes or longitudes were analyzed. Our results revealed an important relationship between climate types and the genetic variation of A. cerana in China, and a greater influence of latitude compared with longitude was observed. Upon selection and morphometry analyses combination for populations under different climate types, we identified a key gene RAPTOR, which was deeply involved in developmental processes and influenced the body size. CONCLUSION: The selection of RAPTOR at the genomic level during adaptive evolution could allow A. cerana to actively regulate its metabolism, thereby fine-tuning body sizes in response to harsh conditions caused by climate change, such as food shortages and extreme temperatures, which may partially elucidate the size differences of A. cerana populations. This study provides crucial support for the molecular genetic basis of the expansion and evolution of naturally distributed honeybee populations.


Assuntos
Aclimatação , Mudança Climática , Abelhas/genética , Animais , China , Tamanho Corporal , Genômica
6.
J Hazard Mater ; 452: 131179, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36948121

RESUMO

Recently, concerns regarding the impact of agrochemical pesticides on non-target organisms have increased. The effect of atrazine, the second-most widely used herbicide in commercial farming globally, on honeybees remains poorly understood. Here, we evaluated how atrazine impacts the survival of honeybees and pollen and sucrose consumption, investigating the morphology and mRNA expression levels of midgut tissue, along with bacterial composition (relative abundance) and load (absolute abundance) in the whole gut. Atrazine did not affect mortality, but high exposure (37.3 mg/L) reduced pollen and sucrose consumption, resulting in peritrophic membrane dysplasia. Sodium channels and chitin synthesis were considered potential atrazine targets, with the expression of various genes related to lipid metabolism, detoxification, immunity, and chemosensory activity being inhibited after atrazine exposure. Importantly, 37.3 mg/L atrazine exposure substantially altered the composition and size of the gut microbial community, clearly reducing both the absolute and relative abundance of three core gram-positive taxa, Lactobacillus Firm-5, Lactobacillus Firm-4, and Bifidobacterium asteroides. With altered microbiome composition and a weakened immune system following atrazine exposure, honeybees became more susceptible to infection by the opportunistic pathogen Serratia marcescens. Thus, considering its scale of use, atrazine could negatively impact honeybee populations worldwide, which may adversely affect global food security.


Assuntos
Atrazina , Microbioma Gastrointestinal , Herbicidas , Praguicidas , Abelhas , Animais , Atrazina/toxicidade , Herbicidas/toxicidade , Bactérias/genética
7.
Zool Res ; 44(3): 483-493, 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-36994538

RESUMO

Despite the urgent need for conservation consideration, strategic action plans for the preservation of the Asian honeybee, Apis cerana Fabricius, 1793, remain lacking. Both the convergent and divergent adaptations of this widespread insect have led to confusing phenotypical traits and inconsistent infraspecific taxonomy. Unclear subspecies boundaries pose a significant challenge to honeybee conservation efforts, as it is difficult to effectively prioritize conservation targets without a clear understanding of subspecies identities. Here, we investigated genome variations in 362 worker bees representing almost all populations of mainland A. cerana to understand how evolution has shaped its population structure. Whole-genome single nucleotide polymorphisms (SNPs) based on nuclear sequences revealed eight putative subspecies, with all seven peripheral subspecies exhibiting mutually exclusive monophyly and distinct genetic divergence from the widespread central subspecies. Our results demonstrated that most classic morphological traits, including body size, were related to the climatic variables of the local habitats and did not reflect the true evolutionary history of the organism. Thus, such morphological traits were not suitable for subspecific delineation. Conversely, wing vein characters showed relative independence to the environment and supported the subspecies boundaries inferred from nuclear genomes. Mitochondrial phylogeny further indicated that the present subspecies structure was a result of multiple waves of population divergence from a common ancestor. Based on our findings, we propose that criteria for subspecies delineation should be based on evolutionary independence, trait distinction, and geographic isolation. We formally defined and described eight subspecies of mainland A. cerana. Elucidation of the evolutionary history and subspecies boundaries enables a customized conservation strategy for both widespread and endemic honeybee conservation units, guiding colony introduction and breeding.


Assuntos
Mitocôndrias , Abelhas/genética , Animais , Filogenia , Fenótipo
8.
Foods ; 12(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36766159

RESUMO

Royal jelly is a specific product secreted by honeybees, and has been sought after to maintain health because of its valuable bioactive substances, e.g., lipids and vitamins. The lipids in royal jelly come from the bee pollen consumed by honeybees, and different plant source of bee pollen affects the lipid composition of royal jelly. However, the effect of bee pollen consumption on the lipid composition of royal jelly remains unclear. Herein, we examined the influence of two factors on the lipid composition of royal jelly: first, two plant sources of bee pollen, i.e., Acer mono Maxim. (BP-Am) and Phellodendron amurense Rupr. (BP-Pa); secondly, different feeding times. Lipidomic analyses were conducted on the royal jelly produced by honeybees fed BP-Am or BP-Pa using ultra-high performance liquid chromatography (UPLC)-Q-Exactive Orbitrap mass spectrometry. The results showed that the phospholipid and fatty acid contents differed in royal jelly produced by honeybees fed BP-Am compared to those fed BP-Pa. There were also differences between timepoints, with many lipid compounds decreasing in abundance soon after single-pollen feeding began, slowly increasing over time, then decreasing again after 30 days of single-pollen feeding. The single bee pollen diet destroyed the nutritional balance of bee colonies and affected the development of hypopharyngeal and maxillary glands, resulting in differences in royal jelly quality. This study provides guidance for optimal selection of honeybee feed for the production of high-quality royal jelly.

9.
Int Immunopharmacol ; 113(Pt B): 109441, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36435060

RESUMO

BACKGROUND: Intestinal ischemia-reperfusion injury (IRI) occurs in multiple clinical settings and contributes to systemic inflammatory response syndrome (SIRS) and multiple organ dysfunction syndrome (MODS). Due to the innate inflammatory immune nature, T cells play a crucial role in the pathogenesis of IRI, which includes not only CD4 + T cells, but also CD8 + and γδ T cells. Carbon monoxide (CO) plays an important role in regulating CD4 + T cell responses and has been proven to be a novel therapeutic target in a variety of inflammatory disease models. OBJECTIVE: This study aimed to assess whether pretreatment with carbon monoxide-releasing molecule-2 (CORM-2) could ameliorate inflammation by regulating differentiation of CD4 + T cells in intestinal mucosa of rats undergoing hemorrhagic shock. METHODS: A hemorrhagic shock model was established to study intestinal IRI. Morphological changes were investigated using light microscopes. Fluorescein isothiocyanate-dextran (FITC-dextran) was used as an indicator of intestinal paracellular permeability. Transcription factors involved in differentiation of CD4 + T cells in intestinal mucosa were detected by immunofluorescence, and the expression levels of related cytokines were determined by Western blotting. RESULTS: The results of hematoxylin-eosin (H-E) staining and FITC-dextran intestinal paracellular permeability assay revealed that CORM-2 maintained the integrity of intestinal mucosal barrier and inhibited the changes of intestinal mucosal permeability. In addition, activation of T helper type 1 (Th1) and T helper type 17 (Th17) cells, and the increased expression levels of proinflammatory cytokines, such as interleukin-17 (IL-17) and interferon-gamma (IFN-γ), were observed in intestinal IRI process. In contrast, pretreatment with CORM-2 weakened changes of the abovementioned observations, in which inhibited activation of Th1 and Th17 cells. However, CORM-2 did not influence differentiation of regulatory T (Treg) cells in intestinal IRI progress. Notably, CORM-2 significantly upregulated the expression level of interleukin-10 (IL-10) protein and downregulated the expression levels of IL-17 and IFN-γ proteins in ileal tissues of rats. CONCLUSION: CORM-2 possessed anti-inflammatory effects in the progress of intestinal IRI by inhibiting activation of Th1 and Th17 cells in rats undergoing hemorrhagic shock.


Assuntos
Traumatismo por Reperfusão , Choque Hemorrágico , Animais , Ratos , Monóxido de Carbono/uso terapêutico , Citocinas , Inflamação , Interferon gama , Interleucina-17 , Traumatismo por Reperfusão/tratamento farmacológico , Choque Hemorrágico/tratamento farmacológico , Síndrome de Resposta Inflamatória Sistêmica
10.
Front Genet ; 13: 1013239, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36267412

RESUMO

Nosema ceranae is a widespread fungal parasite for honey bees, causing bee nosemosis. Based on deep sequencing and bioinformatics, identification of circular RNAs (circRNAs) in Apis cerana workers' midguts and circRNA-regulated immune response of host to N. ceranae invasion were conducted in this current work, followed by molecular verification of back-splicing sites and expression trends of circRNAs. Here, 10185 and 7405 circRNAs were identified in the midguts of workers at 7 days (AcT1) and 10 days (AcT2) post inoculation days post-inoculation with N. ceranae. PCR amplification result verified the back-splicing sites within three specific circRNAs (novel_circ_005123, novel_circ_007177, and novel_circ_015140) expressed in N. ceranae-inoculated midgut. In combination with transcriptome data from corresponding un-inoculated midguts (AcCK1 and AcCK2), 2266 circRNAs were found to be shared by the aforementioned four groups, whereas the numbers of specific ones were 2618, 1917, 5691, and 3723 respectively. Further, 83 52) differentially expressed circRNAs (DEcircRNAs) were identified in AcCK1 vs. AcT1 (AcCK2 vs. AcT2) comparison group. Source genes of DEcircRNAs in workers' midgut at seven dpi were involved in two cellular immune-related pathways such as endocytosis and ubiquitin mediated proteolysis. Additionally, competing endogenous RNA (ceRNA) network analysis showed that 23 13) DEcircRNAs in AcCK1 vs. AcT1 (AcCK2 vs. AcT2) comparison group could target 18 14) miRNAs and further link to 1111 (1093) mRNAs. These target mRNAs were annotated to six cellular immunity pathways including endocytosis, lysosome, phagosome, ubiquitin mediated proteolysis, metabolism of xenobiotics by cytochrome P450, and insect hormone biosynthesis. Moreover, 284 164) internal ribosome entry site and 54 26) ORFs were identified from DEcircRNAs in AcCK1 vs. AcT1 (AcCK2 vs. AcT2) comparison group; additionally, ORFs in DEcircRNAs in midgut at seven dpi with N. ceranae were associated with several cellular immune pathways including endocytosis and ubiquitin-mediated proteolysis. Ultimately, RT-qPCR results showed that the expression trends of six DEcircRNAs were consistent with those in transcriptome data. These results demonstrated that N. ceranae altered the expression pattern of circRNAs in A. c. cerana workers' midguts, and DEcircRNAs were likely to regulate host cellular and humoral immune response to microsporidian infection. Our findings lay a foundation for clarifying the mechanism underlying host immune response to N. ceranae infection and provide a new insight into interaction between Asian honey bee and microsporidian.

11.
Life (Basel) ; 12(10)2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36295077

RESUMO

The technology of long reads substantially improved the contingency of the genome assembly, particularly resolving contiguity of the repetitive regions. By integrating the interactive fragment using Hi-C, and the HiFi technique, a solid genome of the honeybee Apis mellifera carnica was assembled at the chromosomal level. A distinctive pattern of genes involved in social evolution was found by comparing it with social and solitary bees. A positive selection was identified in genes involved with cold tolerance, which likely underlies the adaptation of this European honeybee subspecies in the north hemisphere. The availability of this new high-quality genome will foster further studies and advances on genome variation during subspeciation, honeybee breeding and comparative genomics.

12.
Front Vet Sci ; 9: 951159, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36277062

RESUMO

The health of the western honeybee, Apis mellifera, the most crucial pollinator, has been challenged globally over the past decades. An ectoparasitic mite, Varroa destructor, together with the viruses it vectored, is generally regarded as the vital pathogenic agent. Although the poor health status of A. mellifera compared to its eastern counterpart, Apis cerana, has been broadly identified, the underlying mechanism remains poorly understood and comparison between susceptible and resistant hosts will potentially ameliorate this predicament. Here, we investigated the impacts of two widespread viruses-deformed wing virus type A (DWV-A) and Israeli acute paralysis virus (IAPV), mediated by V. destructor mite, on the capped developing honeybee brood, in the absence of adult workers, of A. mellifera and A. cerana, with positive and negative controls. Our results demonstrated that the endogenous viruses imposed limited damage on the hosts even if the brood was wounded. In contrast, the exogenous viruses introduced by ectoparasites triggered variable mortality of the infested brood between host species. Intriguingly, death causes of both honeybee species presented a similar trend: the acute IAPV generally causes morbidity and mortality of late larvae, while the chronic DWV-A typically leads to brood mortality during and after pupation. Notably, the susceptible immature A. cerana individuals, supported by higher observed mortality and a lower virus tolerance, serve the interests of the colony and foster the overall survival of a resistant honeybee superorganism. These results improve our understanding of the interactions between viruses carried by ectoparasites and their developing hosts, and the novel insight of weak individuals fostering strong colonies may promote breeding efforts to mitigate the indefensible colony losses globally.

13.
Front Microbiol ; 13: 934459, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36118209

RESUMO

The gut microbiome is a crucial element that facilitates a host's adaptation to a changing environment. Compared to the western honeybee Apis mellifera, the Asian honeybee, Apis cerana populations across its natural range remain mostly semi-feral and are less affected by bee management, which provides a good system to investigate how gut microbiota evolve under environmental heterogeneity on large geographic scales. We compared and analyzed the gut microbiomes of 99 Asian honeybees, from genetically diverged populations covering 13 provinces across China. Bacterial composition varied significantly across populations at phylotype, sequence-discrete population (SDP), and strain levels, but with extensive overlaps, indicating that the diversity of microbial community among A. cerana populations is driven by nestedness. Pollen diets were significantly correlated with both the composition and function of the gut microbiome. Core bacteria, Gilliamella and Lactobacillus Firm-5, showed antagonistic turnovers and contributed to the enrichment in carbohydrate transport and metabolism. By feeding and inoculation bioassays, we confirmed that the variations in pollen polysaccharide composition contributed to the trade-off of these core bacteria. Progressive change, i.e., nestedness, is the foundation of gut microbiome evolution among the Asian honeybee. Such a transition during the co-diversification of gut microbiomes is affected by environmental factors, diets in general, and pollen polysaccharides in particular.

14.
Ecotoxicol Environ Saf ; 239: 113648, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35605324

RESUMO

Gut microbiota and nutrition play major roles in honey bee health. Recent reports have shown that pesticides can disrupt the gut microbiota and cause malnutrition in honey bees. Carbendazim is the most commonly used fungicide in China, but it is not clear whether carbendazim negatively affects the gut microbes and nutrient intake levels in honey bees. To address this research gap, we assessed the effects of carbendazim on the survival, pollen consumption, and sequenced 16 S rRNA gene to determine the bacterial composition in the midgut and hindgut. Our results suggest that carbendazim exposure does not cause acute death in honey bees even at high concentrations (5000 mg/L), which are extremely unlikely to exist under field conditions. Carbendazim does not disturb the microbiome composition in the gut of young worker bees during gut microbial colonization and adult worker bees with established gut communities in the mid and hindgut. However, carbendazim exposure significantly decreases pollen consumption in honey bees. Thus, exposure of bees to carbendazim can perturb their beneficial nutrition homeostasis, potentially reducing honey bee immunity and increasing their susceptibility to infection by pathogens, which influence effectiveness as pollinators, even colony health.


Assuntos
Microbioma Gastrointestinal , Animais , Abelhas , Benzimidazóis/toxicidade , Carbamatos/toxicidade , Pólen
15.
Gene ; 830: 146503, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35487395

RESUMO

Apis cerana in Changbai Mountain is an ecological type of Apis cerana, which is an excellent breeding material with cold-resistant developed by long-term natural selection under the ecological conditions. However, the physiological and molecular mechanisms of Changbai Mountain population under cold stress are still unclear. In this study, the Nanopore sequencing was carried out for the transcriptome of Apis cerana in Changbai Mountain in the coldest period of overwintering, which will provide a reference to the cold-resistant mechanism. We determined 5,941 complete ORF sequences, 1,193 lncRNAs, 619 TFs, 10,866 SSRs and functional annotations of 11,599 new transcripts. Our results showed that the myosin family and the C2H2 zinc finger protein transcription factor family possibly have significant impacts on the response mechanism of cold stress during overwintering. In addition, the cold environment alters genes expression profiles in honeybees via different AS and APA mechanisms. These altered genes in Hippo, Foxo, and MARK pathways help them counter the stress of cold in overwinter period. Our results might provide clues about the response of eastern honeybees to extreme cold, and reflect the possible genetic basis of physiological changes.


Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Animais , Abelhas/genética , Regulação da Expressão Gênica , Seleção Genética
16.
Insects ; 13(3)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35323539

RESUMO

Apis cerana is the original host for Nosema ceranae, a widespread fungal parasite resulting in honey bee nosemosis, which leads to severe losses to the apiculture industry throughout the world. However, knowledge of N. ceranae infecting eastern honey bees is extremely limited. Currently, the mechanism underlying N. ceranae infection is still largely unknown. Based on our previously gained high-quality transcriptome datasets derived from N. ceranae spores (NcCK group), N. ceranae infecting Apis cerana cerana workers at seven days post inoculation (dpi) and 10 dpi (NcT1 and NcT2 groups), comparative transcriptomic investigation was conducted in this work, with a focus on virulence factor-associated differentially expressed genes (DEGs). Microscopic observation showed that the midguts of A. c. cerana workers were effectively infected after inoculation with clean spores of N. ceranae. In total, 1411, 604, and 38 DEGs were identified from NcCK vs. NcT1, NcCK vs. NcT2, and NcT1 vs. NcT2 comparison groups. Venn analysis showed that 10 upregulated genes and nine downregulated ones were shared by the aforementioned comparison groups. The GO category indicated that these DEGs were involved in a series of functional terms relevant to biological process, cellular component, and molecular function such as metabolic process, cell part, and catalytic activity. Additionally, KEGG pathway analysis suggested that the DEGs were engaged in an array of pathways of great importance such as metabolic pathway, glycolysis, and the biosynthesis of secondary metabolites. Furthermore, expression clustering analysis demonstrated that the majority of genes encoding virulence factors such as ricin B lectins and polar tube proteins displayed apparent upregulation, whereas a few virulence factor-associated genes such as hexokinase gene and 6-phosphofructokinase gene presented downregulation during the fungal infection. Finally, the expression trend of 14 DEGs was confirmed by RT-qPCR, validating the reliability of our transcriptome datasets. These results together demonstrated that an overall alteration of the transcriptome of N. ceranae occurred during the infection of A. c. cerana workers, and most of the virulence factor-related genes were induced to activation to promote the fungal invasion. Our findings not only lay a foundation for clarifying the molecular mechanism underlying N. ceranae infection of eastern honey bee workers and microsporidian-host interaction.

17.
J Intensive Med ; 2(2): 118-126, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36789186

RESUMO

Background: Ischemia-reperfusion injury (IRI) to the small intestine is associated with the development of systemic inflammation and multiple organ failure after cardiopulmonary resuscitation (CPR). It has been reported that exogenous carbon monoxide (CO) reduces IRI. This study aimed to assess the effects of carbon monoxide-releasing molecule-2 (CORM-2) on intestinal mucosal barrier function in rats undergoing CPR. Methods: We established a rat model of asphyxiation-induced cardiac arrest (CA) and resuscitation to study intestinal IRI, and measured the serum levels of intestinal fatty acid-binding protein. Morphological changes were investigated using light and electron microscopes. The expression levels of claudin 3 (CLDN3), occludin (OCLN), zonula occludens 1 (ZO-1), tumor necrosis factor-alpha (TNF-α), interleukin-10 (IL-10), and nuclear factor kappa B (NF-κB) p65 were detected by western blotting. Results: Compared with the sham-operated group, histological changes and transmission electron microscopy revealed severe intestinal mucosal injury in the CPR and inactive CORM-2 (iCORM-2) groups. In contrast, CORM-2 alleviated intestinal IRI. CORM-2, unlike iCORM-2, markedly decreased the Chiu's scores (2.38 ± 0.38 vs. 4.59 ± 0.34; P < 0.05) and serum intestinal fatty acid-binding protein level (306.10 ± 19.22 vs. 585.64 ± 119.84 pg/mL; P < 0.05) compared with the CPR group. In addition, CORM-2 upregulated the expression levels of tight junction proteins (CLDN3, OCLN, and ZO-1) (P < 0.05) and downregulated those of IL-10, TNF-α, and NF-кB p65 (P < 0.05) in the ileum tissue of rats that received CPR. Conclusions: CORM-2 prevented intestinal mucosal damage as a result of IRI during CPR. The underlying protective mechanism was associated with inhibition of ischemia-reperfusion-induced changes in intestinal epithelial permeability and inflammation in intestinal tissue.

18.
Insects ; 14(1)2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36661944

RESUMO

Piwi-interacting RNAs (piRNAs), a class of small non-coding RNAs (ncRNAs), play pivotal roles in maintaining the genomic stability and modulating biological processes such as growth and development via the regulation of gene expression. However, the piRNAs in the Asian honeybee (Apis cerana) are still largely unknown at present. In this current work, on the basis of previously gained high-quality small RNA-seq datasets, piRNAs in the larval gut of Apis cerana cerana, the nominated species of A. cerana, were identified for the first time, followed by an in-depth investigation of the regulatory roles of differentially expressed piRNAs (DEpiRNAs) in the developmental process of the A. c. cerana. Here, a total of 621 piRNAs were identified in A. c. cerana larval guts, among which 499 piRNAs were shared by 4-(Ac4 group), 5-(Ac5 group), and 6-day-old (Ac6 group) larval guts, while the numbers of unique ones equaled 79, 37, and 11, respectively. The piRNAs in each group ranged from 24 nucleotides (nt) to 33 nt in length, and the first base of the piRNAs had a cytosine (C) bias. Additionally, five up-regulated and five down-regulated piRNAs were identified in the Ac4 vs. Ac5 comparison group, nine of which could target 9011 mRNAs; these targets were involved in 41 GO terms and 137 pathways. Comparatively, 22 up-regulated piRNAs were detected in the Ac5 vs. Ac6 comparison group, 21 of which could target 28,969 mRNAs; these targets were engaged in 46 functional terms and 164 pathways. The results suggested an overall alteration of the expression pattern of piRNAs during the developmental process of A. c. cerana larvae. The regulatory network analysis showed that piR-ace-748815 and piR-ace-512574 in the Ac4 vs. Ac5 comparison group as well as piR-ace-716466 and piR-ace-828146 in the Ac5 vs. Ac6 comparison group were linked to the highest number of targets. Further investigation indicated that targets of DEpiRNAs in the abovementioned two comparison groups could be annotated to several growth and development-associated pathways, such as the Jak/STAT, TGF-ß, and Wnt signaling pathways, indicating the involvement of DEpiRNAs in modulating larval gut development via these crucial pathways. Moreover, the expression trends of six randomly selected DEpiRNAs were verified using a combination of stem-loop RT-PCR and RT-qPCR. These results not only provide a novel insight into the development of the A. c. cerana larval gut, but also lay a foundation for uncovering the epigenetic mechanism underlying larval gut development.

19.
Front Cell Dev Biol ; 9: 690167, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34422813

RESUMO

Embryonic development depends on a highly coordinated shift in transcription programs known as the maternal-to-zygotic transition (MZT). It remains unclear how haploid and diploid embryo coordinate their genomic activation and embryonic development during MZT in haplodiploid animals. Here, we applied a single-embryo RNA-seq approach to characterize the embryonic transcriptome dynamics in haploid males vs. diploid females of the haplodiploid insect honeybee (Apis mellifera). We observed typical zygotic genome activation (ZGA) occurred in three major waves specifically in female honeybee embryos; haploid genome activation was much weaker and occurred later. Strikingly, we also observed three waves of transcriptional activation for thousands of long non-coding transcripts (lncRNA), 73% of which are transcribed from intronic regions and 65% were specific to female honeybee embryos. These findings support a model in which introns encode thousands of lncRNAs that are expressed in a diploid-embryo-specific and ZGA-triggered manner that may have potential functions to regulate gene expression during early embryonic development in the haplodiploid insect honeybee.

20.
Chemosphere ; 266: 129011, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33246707

RESUMO

Studying the sublethal effects of agrochemical pesticides on nontarget honeybees (Apis mellifera) is important for agricultural development. Carbendazim is a widely used broad-spectrum fungicide that inhibits mitotic microtubule formation and cell division. However, the impact of carbendazim on bee health and development has not been fully elucidated. Here, using proteomics approaches, we assessed in vitro the changes in the expression of functional proteins in the head of newly emerged adults following treatment with field concentration of carbendazim during the larval stage. Treatment with carbendazim severely altered 266 protein expression patterns in the heads of adults and 218 of them showed downregulation after carbendazim exposure. Notably, major royal jelly proteins, a crucial multifunctional protein family with irreplaceable function in sustaining the development of colonies, were significantly suppressed in carbendazim-treated bees. This result was verified in both head and hypopharyngeal gland of nurse bees. Moreover, visual and olfactory loss, immune functions, muscular activity, social behavior, neural and brain development, protein synthesis and modification, and metabolism-related proteins were likely inhibited by carbendazim treatment. Together, these results suggest that carbendazim is an environmental risk factor that likely weakens bee colonies, partially due to reduced expression of major royal jelly proteins, which may be potential causes of colony collapse disorder.


Assuntos
Proteínas de Insetos , Proteômica , Animais , Abelhas , Benzimidazóis , Carbamatos , Ácidos Graxos , Proteínas de Insetos/genética , Larva
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA