Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Comput Assist Tomogr ; 47(6): 890-897, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37948363

RESUMO

OBJECTIVE: The aim of the study is to investigate the values of intratumoral and peritumoral regions based on mammography and magnetic resonance imaging for the prediction of Ki-67 and human epidermal growth factor (HER-2) status in breast cancer (BC). METHODS: Two hundred BC patients were consecutively enrolled between January 2017 and March 2021 and divided into training (n = 133) and validation (n = 67) groups. All the patients underwent breast mammography and magnetic resonance imaging screening. Features were derived from intratumoral and peritumoral regions of the tumor and selected using the least absolute shrinkage and selection operator regression to build radiomic signatures (RSs). Receiver operating characteristic curve analysis and the DeLong test were performed to assess and compare each RS. RESULTS: For each modality, the combined RSs integrating features from intratumoral and peritumoral regions always showed better prediction performance for predicting Ki-67 and HER-2 status compared with the RSs derived from intratumoral or peritumoral regions separately. The multimodality and multiregional combined RSs achieved the best prediction performance for predicting the Ki-67 and HER-2 status with an area under the receiver operating characteristic curve of 0.888 and 0.868 in the training cohort and 0.800 and 0.848 in the validation cohort, respectively. CONCLUSIONS: Peritumoral areas provide complementary information to intratumoral regions of BC. The developed multimodality and multiregional combined RSs have good potential for noninvasive evaluation of Ki-67 and HER-2 status in BC.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/patologia , Antígeno Ki-67/metabolismo , Mamografia , Mama/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos
2.
J Comput Assist Tomogr ; 47(4): 643-649, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37380152

RESUMO

OBJECTIVES: The aims of the study are to explore spinal magnetic resonance imaging (MRI)-based radiomics to differentiate spinal metastases from primary nonsmall cell lung cancer (NSCLC) or breast cancer (BC) and to further predict the epidermal growth factor receptor (EGFR) mutation and Ki-67 expression level. METHODS: In total, 268 patients with spinal metastases from primary NSCLC (n = 148) and BC (n = 120) were enrolled between January 2016 and December 2021. All patients underwent spinal contrast-enhanced T1-weighted MRI before treatment. Two- and 3-dimensional radiomics features were extracted from the spinal MRI images of each patient. The least absolute shrinkage and selection operator regression were applied to identify the most important features related to the origin of the metastasis and the EGFR mutation and Ki-67 level. Radiomics signatures (RSs) were established using the selected features and evaluated using receiver operating characteristic curve analysis. RESULTS: We identified 6, 5, and 4 features from spinal MRI to develop Ori-RS, EGFR-RS, and Ki-67-RS for predicting the metastatic origin, EGFR mutation, and Ki-67 level, respectively. The 3 RSs performed well in the training (area under the receiver operating characteristic curves: Ori-RS vs EGFR-RS vs Ki-67-RS, 0.890 vs 0.793 vs 0.798) and validation (area under the receiver operating characteristic curves: Ori-RS vs EGFR-RS vs Ki-67-RS, 0.881 vs 0.744 vs 0.738) cohorts. CONCLUSIONS: Our study demonstrated the value of spinal MRI-based radiomics for identifying the metastatic origin and evaluating the EGFR mutation status and Ki-67 level in patients with NSCLC and BC, respectively, which may have the potential to guide subsequent individual treatment planning.


Assuntos
Neoplasias da Mama , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Neoplasias da Coluna Vertebral , Humanos , Feminino , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/genética , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/genética , Antígeno Ki-67 , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/genética , Neoplasias da Coluna Vertebral/diagnóstico por imagem , Neoplasias da Coluna Vertebral/genética , Receptores ErbB/genética , Mutação , Estudos Retrospectivos
3.
Front Cell Dev Biol ; 11: 1220320, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38264355

RESUMO

This study explores the potential of radiomics to predict the proliferation marker protein Ki-67 levels and human epidermal growth factor receptor 2 (HER-2) status based on MRI images of patients with spinal metastasis from primary breast cancer. A total of 110 patients with pathologically confirmed spinal metastases from primary breast cancer were enrolled between Dec. 2017 and Dec. 2021. All patients underwent T1-weighted contrast-enhanced MRI scans. The PyRadiomics package was used to extract features from the MRI images based on the intraclass correlation coefficient and least absolute shrinkage and selection operator. The most predictive features were used to develop the radiomics signature. The Chi-Square test, Fisher's exact test, Student's t-test, and Mann-Whitney U test were used to evaluate the clinical and pathological characteristics between the high- and low-level Ki-67 groups and the HER-2 positive/negative groups. The radiomics models were compared using receiver operating characteristic curve analysis. The area under the receiver operating characteristic curve (AUC), sensitivity (SEN), and specificity (SPE) were generated as comparison metrics. From the spinal MRI scans, five and two features were identified as the most predictive for the Ki-67 level and HER-2 status, respectively. The developed radiomics signatures generated good prediction performance for the Ki-67 level in the training (AUC = 0.812, 95% CI: 0.710-0.914, SEN = 0.667, SPE = 0.846) and validation (AUC = 0.799, 95% CI: 0.652-0.947, SEN = 0.722, SPE = 0.833) cohorts. Good prediction performance for the HER-2 status was also achieved in the training (AUC = 0.796, 95% CI: 0.686-0.906, SEN = 0.720, SPE = 0.776) and validation (AUC = 0.705, 95% CI: 0.506-0.904, SEN = 0.733, SPE = 0.762) cohorts. The results of this study provide a better understanding of the potential clinical implications of spinal MRI-based radiomics on the prediction of Ki-67 levels and HER-2 status in breast cancer.

4.
Front Oncol ; 12: 1047572, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36578933

RESUMO

Purpose: This study aims to investigate values of intra- and peri-tumoral regions in the mammography and magnetic resonance imaging (MRI) image for prediction of sentinel lymph node metastasis (SLNM) in invasive breast cancer (BC). Methods: This study included 208 patients with invasive BC between Spe. 2017 and Apr. 2021. All patients underwent preoperative digital mammography (DM), digital breast tomosynthesis (DBT), dynamic contrast-enhanced MRI (DCE-MRI) and diffusion-weighted MRI (DWI) scans. Radiomics features were extracted from manually outlined intratumoral regions, and automatically dilated peritumoral tumor regions in each modality. The least absolute shrinkage and selection operator (LASSO) regression was used to select key features from each region to develop radiomics signatures (RSs). Area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, specificity and negative predictive value (NPV) were calculated to evaluate performance of the RSs. Results: Intra- and peri-tumoral regions of BC can provide complementary information on the SLN status. In each modality, the Com-RSs derived from combined intra- and peri-tumoral regions always yielded higher AUCs than the Intra-RSs or Peri-RSs. A total of 10 and 11 features were identified as the most important predictors from mammography (DM plus DBT) and MRI (DCE-MRI plus DWI), respectively. The DCE-MRI plus DWI generated higher AUCs compared with DM plus DBT in the training (AUCs, DCE-MRI plus DWI vs. DM plus DBT, 0.897 vs. 0.846) and validation (AUCs, DCE-MRI plus DWI vs. DM plus DBT, 0.826 vs. 0.786) cohort. Conclusions: Radiomics features from intra- and peri-tumoral regions can provide complementary information to identify the SLNM in both mammography and MRI. The DCE-MRI plus DWI generated lower specificity, but higher AUC, accuracy, sensitivity and negative predictive value compared with DM plus DBT.

5.
Diagn Interv Radiol ; 28(3): 217-225, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35748203

RESUMO

PURPOSE We aimed to evaluate digital breast tomosynthesis (DBT)-based radiomics in the differentiation of benign and malignant breast lesions in women. METHODS A total of 185 patients who underwent DBT scans were enrolled between December 2017 and June 2019. The features of handcrafted and deep learning-based radiomics were extracted from the tumoral and peritumoral regions with different radial dilation distances outside the tumor. A 3-step method was used to select discriminative features and develop the radiomics signature. Discriminative clinical factors were identified by univariate logistic regression. The clinical fac- tors with P < .05 were used to build a clinical model with multivariate logistic regression. The radiomics nomogram was developed by integrating the radiomics signature and discriminative clinical factors. Discriminative performance of the radiomics signature, clinical model, nomo- gram, and breast imaging reporting and data system assessment were evaluated and compared with the receiver operating characteristic and decision curves analysis (DCA). RESULTS A total of 2 handcrafted and 2 deep features were identified as the most discriminative features from the peritumoral regions with 2 mm dilation distances and used to develop the radiomics signature. The nomogram incorporating the radiomics signature, age, and menstruation status showed the best discriminative performance with area under the curve (AUC) values of 0.980 (95% CI, 0.960 to 1.000; sensitivity =0.970, specificity =0.946) in the training cohort and 0.985 (95% CI, 0.960 to 1.000; sensitivity = 0.909, specificity = 0.966) in the validation cohort. DCA con- firmed the potential clinical usefulness of our nomogram. CONCLUSION Our results illustrate that the radiomics nomogram integrating the DBT imaging features and clinical factors (age and menstruation status) can be considered as a useful tool in aiding the clinical diagnosis of breast cancer.


Assuntos
Neoplasias da Mama , Mamografia , Área Sob a Curva , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Feminino , Humanos , Nomogramas , Curva ROC , Estudos Retrospectivos
6.
J Cancer Res Clin Oncol ; 148(1): 97-106, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34623517

RESUMO

PURPOSE: This study aimed to investigate the efficacy of digital mammography (DM), digital breast tomosynthesis (DBT), diffusion-weighted (DW) and dynamic contrast-enhanced (DCE) MRI separately and combined in the prediction of molecular subtypes of breast cancer. METHODS: A total of 241 patients were enrolled and underwent breast MD, DBT, DW and DCE scans. Radiomics features were calculated from intra- and peritumoral regions, and selected with least absolute shrinkage and selection operator (LASSO) regression to develop radiomics signatures (RSs). Prediction performance of intra- and peritumoral regions in the four modalities were evaluated and compared with area under the receiver-operating characteristic (ROC) curve (AUC), specificity and sensitivity as comparison metrics. RESULTS: The RSs derived from combined intra- and peritumoral regions improved prediction AUCs compared with those from intra- or peritumoral regions alone. DM plus DBT generated better AUCs than the DW plus DCE on predicting Luminal A and Luminal B in the training (Luminal A: 0.859 and 0.805; Luminal B: 0.773 and 0.747) and validation (Luminal A: 0.906 and 0.853; Luminal B: 0.807 and 0.784) cohort. For the prediction of HER2-enriched and TN, the DW plus DCE yielded better AUCs than the DM plus DBT in the training (HER2-enriched: 0.954 and 0.857; TN: 0.877 and 0.802) and validation (HER2-enriched: 0.974 and 0.907; TN: 0.938 and 0.874) cohort. CONCLUSIONS: Peritumoral regions can provide complementary information to intratumoral regions for the prediction of molecular subtypes. Compared with MRI, the mammography showed higher AUCs for the prediction of Luminal A and B, but lower AUCs for the prediction of HER2-enriched and TN.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Mama/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Mamografia/métodos , Neoplasias da Mama/classificação , Feminino , Humanos , Pessoa de Meia-Idade , Radiometria , Estudos Retrospectivos
7.
Mol Imaging Biol ; 24(4): 550-559, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34904187

RESUMO

PURPOSE: To noninvasively evaluate the use of intratumoral and peritumoral regions from full-field digital mammography (DM), digital breast tomosynthesis (DBT), dynamic contrast-enhanced (DCE), and diffusion-weighted (DW) magnetic resonance imaging (MRI) images separately and combined to predict the Ki-67 level based on radiomics. PROCEDURES: A total of 209 patients with pathologically confirmed breast cancer were consecutively enrolled from September 2017 to March 2021, who underwent DM, DBT, DCE-MRI, and DW MRI scans. Radiomics features were calculated from intratumoral and peritumoral regions in each modality and selected with the least absolute shrinkage and selection operator (LASSO) regression. Radiomics signatures (RSs) were built based on intratumoral, peritumoral, and combined intra- and peritumoral regions. The prediction performance of the RSs was evaluated using the area under the receiver operating characteristic curve (AUC), specificity, and sensitivity as comparison metrics. A nomogram was constructed by integrating the multi-model RS and important clinical predictors and assessed by calibration and decision curve analysis. RESULTS: The combined intra- and peritumoral RSs improved the AUC compared with intra- or peritumoral RSs in each modality. The DCE plus DW MRI yielded higher AUC and specificity but lower sensitivity compared with the DM plus DBT. The nomogram incorporating the multi-model RS, age, and lymph node metastasis status achieved the best prediction performance in the training (AUC, nomogram vs. fusion RS vs. clinical model, 0.922 vs. 0.917 vs. 0.672) and validation (AUCs, nomogram vs. fusion RS vs. clinical model, 0.866 vs. 0.838 vs. 0.661) cohorts. DCA analysis confirmed the potential clinical utility of the nomogram. CONCLUSIONS: Peritumoral regions can provide complementary information to intratumoral regions in mammography and MRI for the prediction of Ki-67 levels. The MRI performed better than mammography in terms of AUC and specificity but weaker in sensitivity. The nomogram has a predictive advantage over each modality and could be a potential tool for predicting Ki-67 levels in breast cancer.


Assuntos
Neoplasias da Mama , Imageamento por Ressonância Magnética Multiparamétrica , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Feminino , Humanos , Antígeno Ki-67 , Metástase Linfática , Imageamento por Ressonância Magnética/métodos , Mamografia/métodos , Estudos Retrospectivos
8.
Med Phys ; 49(1): 219-230, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34861045

RESUMO

PURPOSE: To non-invasively evaluate the Ki-67 level in digital breast tomosynthesis (DBT) images of breast cancer (BC) patients based on subregional radiomics. METHODS: A total of 266 patients who underwent DBT scans were consecutively enrolled at two centers, between September 2017 and September 2021. The whole tumor region was partitioned into various intratumoral subregions, based on individual- and population-level clustering. Handcrafted radiomics and deep learning-based features were extracted from the subregions and from the whole tumor region, and were selected by least absolute shrinkage and selection operator (LASSO) regression, yielding radiomics signatures (RSs). The area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, and specificity were calculated to assess the developed RSs. RESULTS: Each breast tumor region was partitioned into an inner subregion (S1) and a marginal subregion (S2). The RSs derived from S1 always generated higher AUCs compared with those from S2 or from the whole tumor region (W), for the external validation cohort (AUCs, S1 vs. W, handcrafted RSs: 0.583 [95% CI, 0.429-0.727] vs. 0.559 [95% CI, 0.405-0.705], p-value: 0.920; deep RSs: 0.670 [95% CI, 0.516-0.802] vs. 0.551 [95% CI, 0.397-0.698], p-value: 0.776). The fusion RSs, combining handcrafted and deep learning-based features derived from S1, yielded the highest AUCs of 0.820 (95% CI, 0.714-0.900) and 0.792 (95% CI, 0.647-0.897) for the internal and external validation cohorts, respectively. CONCLUSIONS: The subregional radiomics approach can accurately predict the Ki-67 level based on DBT data; thus, it may be used as a potential non-invasive tool for preoperative treatment planning in BC.


Assuntos
Neoplasias da Mama , Área Sob a Curva , Neoplasias da Mama/diagnóstico por imagem , Feminino , Humanos , Antígeno Ki-67/metabolismo , Mamografia , Curva ROC , Estudos Retrospectivos
9.
Front Oncol ; 11: 725922, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34568055

RESUMO

OBJECTIVES: This study aims to evaluate digital mammography (DM), digital breast tomosynthesis (DBT), dynamic contrast-enhanced (DCE), and diffusion-weighted (DW) MRI, individually and combined, for the values in the diagnosis of breast cancer, and propose a visualized clinical-radiomics nomogram for potential clinical uses. METHODS: A total of 120 patients were enrolled between September 2017 and July 2018, all underwent preoperative DM, DBT, DCE, and DWI scans. Radiomics features were extracted and selected using the least absolute shrinkage and selection operator (LASSO) regression. A radiomics nomogram was constructed integrating the radiomics signature and important clinical predictors, and assessed with the receiver operating characteristic (ROC) curve, calibration curve, and decision curve analysis (DCA). RESULTS: The radiomics signature derived from DBT plus DM generated a lower area under the ROC curve (AUC) and sensitivity, but a higher specificity compared with that from DCE plus DWI. The nomogram integrating the combined radiomics signature, age, and menstruation status achieved the best diagnostic performance in the training (AUCs, nomogram vs. combined radiomics signature vs. clinical model, 0.975 vs. 0.964 vs. 0.782) and validation (AUCs, nomogram vs. combined radiomics signature vs. clinical model, 0.983 vs. 0.978 vs. 0.680) cohorts. DCA confirmed the potential clinical usefulness of the nomogram. CONCLUSIONS: The DBT plus DM provided a lower AUC and sensitivity, but a higher specificity than DCE plus DWI for detecting breast cancer. The proposed clinical-radiomics nomogram has diagnostic advantages over each modality, and can be considered as an efficient tool for breast cancer screening.

10.
Autoimmunity ; 54(4): 225-233, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33904361

RESUMO

SChLAP1 is recently reported as a key oncogenic long non-coding RNA in human cancer. However, whether SChLAP1 functions in non-small cell lung cancer (NSCLC) and its specific potential regulatory mechanism remain unexplored. In this study, we found that depletion of SChLAP1 significantly inhibited NSCLC cell proliferation, migration and invasion in vitro, and retarded tumour growth and lung metastasis in vivo. SChLAP1 facilitated NSCLC cell immune evasion against CD8+ T cells through PD-1/PD-L1 immune checkpoint. In detail, SChLAP1 was able to directly interact with AUF1, antagonizing the binding between AUF1 and PDL1 mRNA 3'-UTR, resulting in increasing PDL1 mRNA stability and expression, thereby repressing CD8+ T cell function. Consistently, anti-PD-1/PD-L1 treatment evidently blocked the enhanced cell proliferation and invasion caused by SChLAP1 overexpression. Importantly, SChLAP1 was significantly upregulated in NSCLC cell lines, serum and tissues, which was identified as an excellent indicator for the diagnosis and prognosis of NSCLC. In conclusion, our data for the first time uncover that SChLAP1 functions an oncogene in NSCLC by promoting cancer cell immune evasion via regulating the AUF1/PDL1 axis, targeting of SChLAP1 may be a potential approach to improve the efficacy of immunotherapy in NSCLC patients.


Assuntos
Antígeno B7-H1 , Carcinoma Pulmonar de Células não Pequenas , Ribonucleoproteína Nuclear Heterogênea D0/genética , Neoplasias Pulmonares , RNA Longo não Codificante , Antígeno B7-H1/genética , Linfócitos T CD8-Positivos , Carcinoma Pulmonar de Células não Pequenas/patologia , Humanos , Evasão da Resposta Imune , Neoplasias Pulmonares/patologia , RNA Longo não Codificante/genética
11.
Cancer Biomark ; 19(2): 221-230, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28269758

RESUMO

BACKGROUNDS: Hepatocellular carcinoma (HCC) is an epithelial cancer that originates from hepatocytes and it is the most common primary malignant tumor of the liver. Till now the prognosis of HCC patients is generally poor. The molecular mechanism giving rise to HCC development and recurrence is still largely unknown. MicroRNA-31 (miR-31) is among the most commonly altered microRNAs in human cancers, and alternations of miR-31 expression were reported to play pivotal roles in tumorigenesis and tumor progression. METHODS: In this work, the primary biological function of miR-31 in HCC tumorigenesis was investigated. RESULTS: Our data showed that overexpression of miR-31 induced markedly inhibition of HCC cell proliferation, migration in vitro and inhibited xenograft tumor growth in vivo. One target gene of miR-31, NDRG3, was also demonstrated indispensable for HCC cell survival. Furthermore, miR-31 and NDRG3 were both essential for HCC cell drug resistance in adriamycin. CONCLUSIONS: We conclude that miR-31 is a crucial regulator in hepatocellular carcinoma, miR-31 and its target gene NDRG3 may be potential therapeutic targets for HCC treatment in the future.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/secundário , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Neoplasias Hepáticas/patologia , MicroRNAs/genética , Proteínas do Tecido Nervoso/metabolismo , Animais , Antibióticos Antineoplásicos/farmacologia , Apoptose , Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/mortalidade , Movimento Celular , Proliferação de Células , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/mortalidade , Metástase Linfática , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Prognóstico , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA