Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Exp Neurol ; 378: 114755, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38493982

RESUMO

BACKGROUND: Repeated sevoflurane exposures in neonatal rats may lead to neuronal apoptosis affecting long-term cognitive function, the mechanism is unknown. Neuroligin1 (NL1) is essential for normal excitatory transmission and long-term synaptic plasticity in the hippocampus of intact animals. Herein, we explore the role of NL1 in hippocampal excitatory synapses on long-term cognitive impairments induced by repeated sevoflurane exposures in neonatal rats. METHODS: From postnatal day six (P6) to P8, neonatal rats were exposed to 30% oxygen or 3% sevoflurane +30% oxygen for 2 h daily. Rats from each litter were randomly assigned to five groups: control group (Con), native control adeno-associated virus (NC-AAV) group (Con + NC-AAV), sevoflurane group (Sev), sevoflurane + recombinant RNAi adeno-associated virus targeting NL1 downregulation (NL1--AAV) group (Sev + NL1--AAV) and control + recombinant RNAi adeno-associated virus targeting NL1 upregulation (NL1+-AAV) group (Con + NL1+-AAV). Animals were injected with NC-AAV or NL1-AAV into the bilateral hippocampal CA1 area and caged on P21. From P35 to P40, behavioral tests including open field (OF), novel object recognition (NOR), and fear conditioning (FC) tests were performed to assess cognitive function in adolescent rats. In another experiment, rat brains were harvested for immunofluorescence staining, western blotting, co-immunoprecipitation, and real-time polymerase chain reaction (PCR). RESULTS: We found that the mRNA and protein levels of NL1 were substantially higher in the Sev group than in the Con group. Immunofluorescence showed that NL1 and PSD95 were highly colocalized in hippocampal CA1 area and vesicular GABA transporter (vGAT) around neurons decreased after repeated sevoflurane exposures. Co-immunoprecipitation showed that the amount of PSD95 with NL1 antibody was significantly increased in the Sev group compared to the Con group. These rats had a poorer performance in the NOR and FC tests than control rats when they were adolescents. These results were reversed by NL1--AAV injection into the CA1 area. NL1+-AAV group was similar to the Sev group. CONCLUSION: We have demonstrated that repeated neonatal sevoflurane exposures decreased inhibitory synaptic inputs (labelled by vGAT) around neurons, which may influence the upregulation of NL1 in hippocampal excitatory synapses and enhanced NL1/PSD95 interaction, ultimately leading to long-term cognitive impairments in adolescent rats. Injecting NL1--AAV reversed this damage. These results suggested that NL1 in excitatory synapses contributes to long-term cognitive impairments after repeated neonatal sevoflurane exposures.


Assuntos
Anestésicos Inalatórios , Animais Recém-Nascidos , Disfunção Cognitiva , Hipocampo , Ratos Sprague-Dawley , Sevoflurano , Sinapses , Animais , Sevoflurano/toxicidade , Ratos , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/metabolismo , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Anestésicos Inalatórios/toxicidade , Masculino , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Moléculas de Adesão Celular Neuronais/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Feminino
2.
Int Immunopharmacol ; 125(Pt B): 111210, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37976600

RESUMO

BACKGROUND: Melatonin is known to have protective effects in aging, neurodegenerative disorders and mitochondria-related diseases, while there is a poor understanding of the effects of melatonin treatment on mitophagy in neonatal cognitive dysfunction after repeated sevoflurane exposures. This study explores the protective effects of melatonin on mitophagy and cognition in developing rats exposed to sevoflurane. METHODS: Postnatal day six (P6) neonatal rats were exposed to 3 % sevoflurane for 2 h daily from P6 to P8. In the intervention groups, rats received 3-Methyladenine (3-MA) intracerebroventricularly from P6 to P8 and melatonin intraperitoneally from P6 to P8 following water drinking once daily from P21 to P41, respectively. Behavioral tests, including open field (OF), novel object recognition (NOR), and fear conditioning (FC) tests, were performed to assess cognitive function during young adulthood. In another experiment, rat brains were harvested for biochemical, histopathological, and electron microscopy studies. RESULTS: Rats exposed to sevoflurane showed disordered mitophagy and mitochondrial dysfunction as revealed by increased mitophagy marker proteins (microtubule-associated protein 1 light chain 3 (LC3) II/I, and parkin), decreased autophagy marker protein (sequestosome 1 (P62/SQSTM1)), electron transport chain (ETC) proteins and ATP levels. Immunofluorescent staining of LC3 was co-localized mostly with a neuronal marker and microglial marker but was not co-localized with a marker for astrocytes in rats exposed to sevoflurane. These rats had poorer performance in the NOR and FC tests than control rats during young adulthood. Melatonin treatment reversed the abnormal expression of mitophagy proteins, mitochondrial energy metabolism, the activity of microglia, and impaired cognition. These ameliorations were blocked by an autophagy inhibitor, 3-MA, except for the activation of microglia. CONCLUSION: We have demonstrated that melatonin inhibits microglial activation by enhancing mitophagy and finally significantly reduces sevoflurane-induced deficits in cognition in neonatal rats. These results suggest that melatonin might be beneficial if considered when the anesthesia must be administered at a very young age.


Assuntos
Melatonina , Mitofagia , Animais , Ratos , Melatonina/farmacologia , Melatonina/uso terapêutico , Sevoflurano , Autofagia , Cognição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA