RESUMO
Importance;: Copy number variants (CNVs) classified as pathogenic are identified in 10% to 15% of patients referred for neurodevelopmental disorders. However, their effect sizes on cognitive traits measured as a continuum remain mostly unknown because most of them are too rare to be studied individually using association studies. Objective: To measure and estimate the effect sizes of recurrent and nonrecurrent CNVs on IQ. Design, Setting, and Participants: This study identified all CNVs that were 50 kilobases (kb) or larger in 2 general population cohorts (the IMAGEN project and the Saguenay Youth Study) with measures of IQ. Linear regressions, including functional annotations of genes included in CNVs, were used to identify features to explain their association with IQ. Validation was performed using intraclass correlation that compared IQ estimated by the model with empirical data. Main Outcomes and Measures: Performance IQ (PIQ), verbal IQ (VIQ), and frequency of de novo CNV events. Results: The study included 2090 European adolescents from the IMAGEN study and 1983 children and parents from the Saguenay Youth Study. Of these, genotyping was performed on 1804 individuals from IMAGEN and 977 adolescents, 445 mothers, and 448 fathers (484 families) from the Saguenay Youth Study. We observed 4928 autosomal CNVs larger than 50 kb across both cohorts. For rare deletions, size, number of genes, and exons affect IQ, and each deleted gene is associated with a mean (SE) decrease in PIQ of 0.67 (0.19) points (P = 6 × 10-4); this is not so for rare duplications and frequent CNVs. Among 10 functional annotations, haploinsufficiency scores best explain the association of any deletions with PIQ with a mean (SE) decrease of 2.74 (0.68) points per unit of the probability of being loss-of-function intolerant (P = 8 × 10-5). Results are consistent across cohorts and unaffected by sensitivity analyses removing pathogenic CNVs. There is a 0.75 concordance (95% CI, 0.39-0.91) between the effect size on IQ estimated by our model and IQ loss calculated in previous studies of 15 recurrent CNVs. There is a close association between effect size on IQ and the frequency at which deletions occur de novo (odds ratio, 0.86; 95% CI, 0.84-0.87; P = 2.7 × 10-88). There is a 0.76 concordance (95% CI, 0.41-0.91) between de novo frequency estimated by the model and calculated using data from the DECIPHER database. Conclusions and Relevance: Models trained on nonpathogenic deletions in the general population reliably estimate the effect size of pathogenic deletions and suggest omnigenic associations of haploinsufficiency with IQ. This represents a new framework to study variants too rare to perform individual association studies and can help estimate the cognitive effect of undocumented deletions in the neurodevelopmental clinic.
Assuntos
Variações do Número de Cópias de DNA/genética , Inteligência/genética , Adolescente , Criança , Aberrações Cromossômicas , Estudos de Coortes , Europa (Continente) , Éxons , Feminino , Deleção de Genes , Triagem de Portadores Genéticos , Genótipo , Haploinsuficiência/genética , Humanos , Mutação com Perda de Função/genética , Masculino , Modelos Genéticos , Transtornos do Neurodesenvolvimento/genética , Quebeque , Estudos de AmostragemRESUMO
PURPOSE: Fetal anomalies represent a poorly studied group of developmental disorders. Our objective was to assess the impact of whole-exome sequencing (WES) on the investigation of these anomalies. METHODS: We performed WES in 101 fetuses or stillborns who presented prenatally with severe anomalies, including renal a/dysgenesis, VACTERL association (vertebral defects, anal atresia, cardiac defects, tracheoesophageal fistula, renal anomalies, and limb abnormalities), brain anomalies, suspected ciliopathies, multiple major malformations, and akinesia. RESULTS: A molecular diagnosis was obtained in 19 cases (19%). In 13 of these cases, the diagnosis was not initially suspected by the clinicians because the phenotype was nonspecific or atypical, corresponding in some cases to the severe end of the spectrum of a known disease (e.g., MNX1-, RYR1-, or TUBB-related disorders). In addition, we identified likely pathogenic variants in genes (DSTYK, ACTB, and HIVEP2) previously associated with phenotypes that were substantially different from those found in our cases. Finally, we identified variants in novel candidate genes that were associated with perinatal lethality, including de novo mutations in GREB1L in two cases with bilateral renal agenesis, which represents a significant enrichment of such mutations in our cohort. CONCLUSION: Our study opens a window on the distinctive genetic landscape associated with fetal anomalies and highlights the power-but also the challenges-of WES in prenatal diagnosis.
Assuntos
Anormalidades Congênitas/genética , Feto/anormalidades , Nefropatias/congênito , Rim/anormalidades , Proteínas de Neoplasias/genética , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Adulto , Canal Anal/anormalidades , Esôfago/anormalidades , Família , Feminino , Feto/patologia , Genômica , Genótipo , Cardiopatias Congênitas/genética , Humanos , Hidrocefalia/genética , Nefropatias/genética , Deformidades Congênitas dos Membros/genética , Masculino , Mutação , Fenótipo , Gravidez , Diagnóstico Pré-Natal/métodos , Coluna Vertebral/anormalidades , Natimorto/genética , Traqueia/anormalidades , Fístula Traqueoesofágica/genética , Anormalidades Urogenitais/genética , Sequenciamento do Exoma/métodosRESUMO
A challenge in clinical genomics is to predict whether copy number variation (CNV) affecting a gene or multiple genes will manifest as disease. Increasing recognition of gene dosage effects in neurodevelopmental disorders prompted us to develop a computational approach based on critical-exon (highly expressed in brain, highly conserved) examination for potential etiologic effects. Using a large CNV dataset, our updated analyses revealed significant (P < 1.64 × 10(-15)) enrichment of critical-exons within rare CNVs in cases compared to controls. Separately, we used a weighted gene co-expression network analysis (WGCNA) to construct an unbiased protein module from prenatal and adult tissues and found it significantly enriched for critical exons in prenatal (P < 1.15 × 10(-50), OR = 2.11) and adult (P < 6.03 × 10(-18), OR = 1.55) tissues. WGCNA yielded 1,206 proteins for which we prioritized the corresponding genes as likely to have a role in neurodevelopmental disorders. We compared the gene lists obtained from critical-exon and WGCNA analysis and found 438 candidate genes associated with CNVs annotated as pathogenic, or as variants of uncertain significance (VOUS), from among 10,619 developmental delay cases. We identified genes containing CNVs previously considered to be VOUS to be new candidate genes for neurodevelopmental disorders (GIT1, MVB12B and PPP1R9A) demonstrating the utility of this strategy to index the clinical effects of CNVs.
Assuntos
Variações do Número de Cópias de DNA , Deficiências do Desenvolvimento/genética , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla/métodos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adulto , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Criança , Deficiências do Desenvolvimento/metabolismo , Feminino , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Masculino , Proteômica/métodosRESUMO
BACKGROUND: Molecular karyotyping is now the first-tier genetic test for patients affected with unexplained intellectual disability (ID) and/or multiple congenital anomalies (MCA), since it identifies a pathogenic copy number variation (CNV) in 10-14% of them. High-resolution microarrays combining molecular karyotyping and single nucleotide polymorphism (SNP) genotyping were recently introduced to the market. In addition to identifying CNVs, these platforms detect loss of heterozygosity (LOH), which can indicate the presence of a homozygous mutation or uniparental disomy. Since these abnormalities can be associated with ID and/or MCA, their detection is of particular interest for patients whose phenotype remains unexplained. However, the diagnostic yield obtained with these platforms is not confirmed, and the real clinical value of LOH detection has not been established. METHODS: We selected 21 children affected with ID, with or without congenital malformations, for whom standard genetic analyses failed to provide a diagnosis. We performed high-resolution SNP array analysis with four platforms (Affymetrix Genome-Wide Human SNP Array 6.0, Affymetrix Cytogenetics Whole-Genome 2.7 M array, Illumina HumanOmni1-Quad BeadChip, and Illumina HumanCytoSNP-12 DNA Analysis BeadChip) on whole-blood samples obtained from children and their parents to detect pathogenic CNVs and LOHs, and compared the results with those obtained on a moderate resolution array-based comparative genomic hybridization platform (NimbleGen CGX-12 Cytogenetics Array), already used in the clinical setting. RESULTS: We identified a total of four pathogenic CNVs in three patients, and all arrays successfully detected them. With the SNP arrays, we also identified a LOH containing a gene associated with a recessive disorder consistent with the patient's phenotype (i.e., an informative LOH) in four children (including two siblings). A homozygous mutation within the informative LOH was found in three of these patients. Therefore, we were able to increase the diagnostic yield from 14.3% to 28.6% as a result of the information provided by LOHs. CONCLUSIONS: This study shows the clinical usefulness of SNP arrays in children with ID, since they successfully detect pathogenic CNVs, identify informative LOHs that can lead to the diagnosis of a recessive disorder. It also highlights some challenges associated with the use of SNP arrays in a clinical laboratory.
Assuntos
Biomarcadores/metabolismo , Variações do Número de Cópias de DNA , Deficiências do Desenvolvimento/diagnóstico , Deficiências do Desenvolvimento/genética , Genoma Humano , Perda de Heterozigosidade , Polimorfismo de Nucleotídeo Único/genética , Adolescente , Criança , Pré-Escolar , Hibridização Genômica Comparativa/métodos , Feminino , Perfilação da Expressão Gênica , Humanos , Lactente , Cariotipagem , Masculino , Análise de Sequência com Séries de Oligonucleotídeos/métodos , FenótipoRESUMO
INTRODUCTION: Erythromelalgia due to heterozygous gain-of-function SCN9A mutations usually presents as a pure sensory-autonomic disorder characterized by recurrent episodes of burning pain and redness of the extremities. METHODS: We describe a patient with an unusual phenotypic presentation of gross motor delay, childhood-onset erythromelalgia, extreme visceral pain episodes, hypesthesia, and self-mutilation. The investigation of the patient's motor delay included various biochemical analyses, a comparative genomic hybridization array (CGH), electromyogram (EMG), and muscle biopsy. Once erythromelalgia was suspected clinically, the SCN9A gene was sequenced. RESULTS: The EMG, CGH, and biochemical tests were negative. The biopsy showed an axonal neuropathy and neurogenic atrophy. Sequencing of SCN9A revealed a heterozygous missense mutation in exon 7; p.I234T. CONCLUSIONS: This is a case of global motor delay and erythromelalgia associated with SCN9A. The motor delay may be attributed to the extreme pain episodes or to a developmental perturbation of proprioceptive inputs.
Assuntos
Transtornos das Habilidades Motoras/genética , Mutação de Sentido Incorreto/genética , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Índice de Gravidade de Doença , Transtornos Somatoformes/genética , Carbamazepina/uso terapêutico , Pré-Escolar , Comorbidade , Eritromelalgia/tratamento farmacológico , Eritromelalgia/epidemiologia , Eritromelalgia/genética , Feminino , Humanos , Hipestesia/tratamento farmacológico , Hipestesia/epidemiologia , Hipestesia/genética , Mexiletina/uso terapêutico , Transtornos das Habilidades Motoras/tratamento farmacológico , Transtornos das Habilidades Motoras/epidemiologia , Transtornos Somatoformes/tratamento farmacológico , Transtornos Somatoformes/epidemiologia , Resultado do TratamentoRESUMO
OBJECTIVE: To report the prenatal presentation with dilated cardiomyopathy of methylmalonic aciduria and homocystinuria, cblC type [cobalamin C (cblC) deficiency] (MIM 277400). METHOD: We describe a boy with cblC deficiency who presented prenatally with fetal ultrasound findings of dilated cardiomyopathy and growth restriction. RESULTS: Dilated cardiomyopathy and growth retardation were detected in the third trimester of an initially uncomplicated pregnancy. Investigations were negative for chromosomal and other known causes. Growth restriction persisted but fetal heart function improved. Postnatal biochemical evaluation revealed combined methylmalonic acidemia and homocystinemia. Molecular investigations confirmed cblC deficiency. Initiation of treatment was followed by rapid clinical improvement. CONCLUSION: Prenatal dilated cardiomyopathy can be the presenting sign of cblC deficiency. Inborn errors of metabolism should be considered in the investigation of prenatally diagnosed dilated cardiomyopathy in view of the possible impact on treatment and future reproductive options, in some of these conditions.
Assuntos
Cardiomiopatia Dilatada/etiologia , Homocistinúria/complicações , Homocistinúria/diagnóstico , Proteínas de Membrana Transportadoras/deficiência , Proteínas Mitocondriais/deficiência , Ultrassonografia Pré-Natal , Adulto , Erros Inatos do Metabolismo dos Aminoácidos/tratamento farmacológico , Cardiomiopatia Dilatada/diagnóstico por imagem , Dieta com Restrição de Proteínas , Feminino , Retardo do Crescimento Fetal/diagnóstico por imagem , Humanos , Hidroxocobalamina/administração & dosagem , Recém-Nascido , Injeções Intramusculares , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Proteínas de Transporte da Membrana Mitocondrial , Gravidez , Vitaminas/administração & dosagemRESUMO
Pseudoxanthoma elasticum (PXE) is a heritable connective tissue disorder caused by mutations in an ABC (ATP-Binding Cassette) transporter gene (ABCC6), which manifests with cutaneous, ophthalmologic, and cardiovascular findings. We studied a cohort of 19 families with PXE, and identified 16 different mutations, nine of which were novel variants. The mutation detection rate was about 77%. We found that arginine codon 518 was, with the previously described R1141X and EX23_29del, a recurrently mutated amino acid (11.5% of the mutations detected for each variant R518Q and R518X). No clear delineation of genotype/phenotype correlation was identified, and marked intra-familial variability of the disease was seen in one family. One family with pseudodominant inheritance displayed three distinct ABCC6 mutations, providing further evidence for the probable exclusive recessive transmission of PXE. These data contribute to the expanding database of ABCC6 mutations, to the description of phenotypic variability, and inheritance in PXE, and should be helpful for genetic counselling.