Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
FEMS Microbes ; 5: xtae002, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38450098

RESUMO

Container aquatic habitats host a community of aquatic insects, primarily mosquito larvae that browse on container surface microbial biofilm and filter-feed on microorganisms in the water column. We examined how the bacterial communities in these habitats respond to feeding by larvae of two container-dwelling mosquito species, Culex pipiens and Cx. restuans. We also investigated how the microbiota of these larvae is impacted by intra- and interspecific interactions. Microbial diversity and richness were significantly higher in water samples when mosquito larvae were present, and in Cx. restuans compared to Cx. pipiens larvae. Microbial communities of water samples clustered based on the presence or absence of mosquito larvae and were distinct from those of mosquito larvae. Culex pipiens and Cx. restuans larvae harbored distinct microbial communities when reared under intraspecific conditions and similar microbial communities when reared under interspecific conditions. These findings demonstrate that mosquito larvae play a major role in structuring the microbial communities in container habitats and that intra- and interspecific interactions in mosquito larvae may shape their microbiota. This has important ecological and public health implications since larvae of the two mosquito species are major occupants of container habitats while the adults are vectors of West Nile virus.

2.
Sci Rep ; 13(1): 22511, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38110471

RESUMO

G protein-coupled receptors (GPCRs), which regulate numerous intracellular signaling cascades that mediate many essential physiological processes, are attractive yet underexploited insecticide targets. RNA interference (RNAi) technology could facilitate the custom design of environmentally safe pesticides that target GPCRs in select target pests yet are not toxic to non-target species. This study investigates the hypothesis that an RNAi yeast insecticide designed to silence mosquito serotonin receptor 1 (5-HTR1) genes can kill mosquitoes without harming non-target arthropods. 5-HTR.426, a Saccharomyces cerevisiae strain that expresses an shRNA targeting a site specifically conserved in mosquito 5-HTR1 genes, was generated. The yeast can be heat-inactivated and delivered to mosquito larvae as ready-to-use tablets or to adult mosquitoes using attractive targeted sugar baits (ATSBs). The results of laboratory and outdoor semi-field trials demonstrated that consumption of 5-HTR.426 yeast results in highly significant mortality rates in Aedes, Anopheles, and Culex mosquito larvae and adults. Yeast consumption resulted in significant 5-HTR1 silencing and severe neural defects in the mosquito brain but was not found to be toxic to non-target arthropods. These results indicate that RNAi insecticide technology can facilitate selective targeting of GPCRs in intended pests without impacting GPCR activity in non-targeted organisms. In future studies, scaled production of yeast expressing the 5-HTR.426 RNAi insecticide could facilitate field trials to further evaluate this promising new mosquito control intervention.


Assuntos
Aedes , Inseticidas , Animais , Interferência de RNA , Saccharomyces cerevisiae/genética , Inseticidas/farmacologia , RNA Interferente Pequeno/genética , Controle de Mosquitos/métodos , Aedes/genética , Larva/genética , Receptores 5-HT1 de Serotonina/genética
3.
Insects ; 14(12)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38132622

RESUMO

Eco-friendly new mosquito control innovations are critical for the ongoing success of global mosquito control programs. In this study, Sh.463_56.10R, a robust RNA interference (RNAi) yeast insecticide strain that is suitable for scaled fermentation, was evaluated under semi-field conditions. Inactivated and dried Sh.463_56.10R yeast induced significant mortality of field strain Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus larvae in semi-field larvicide trials conducted outdoors in St. Augustine, Trinidad, where 100% of the larvae were dead within 24 h. The yeast was also stably suspended in commercial bait and deployed as an active ingredient in miniature attractive targeted sugar bait (ATSB) station sachets. The yeast ATSB induced high levels of Aedes and Culex mosquito morbidity in semi-field trials conducted in Trinidad, West Indies, as well as in Bangkok, Thailand, in which the consumption of the yeast resulted in adult female mosquito death within 48 h, faster than what was observed in laboratory trials. These findings support the pursuit of large-scale field trials to further evaluate the Sh.463_56.10R insecticide, a member of a promising new class of species-specific RNAi insecticides that could help combat insecticide resistance and support effective mosquito control programs worldwide.

4.
J Fungi (Basel) ; 9(11)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37998862

RESUMO

The global deployment of RNAi yeast insecticides involves transitioning from the use of laboratory yeast strains to more robust strains that are suitable for scaled fermentation. In this investigation, the RNA-guided Cas-CLOVER system was used in combination with Piggybac transposase to produce robust Saccharomyces cerevisiae strains with multiple integrated copies of the Sh.463 short hairpin RNA (shRNA) insecticide expression cassette. This enabled the constitutive high-level expression of an insecticidal shRNA corresponding to a target sequence that is conserved in mosquito Shaker genes, but which is not found in non-target organisms. Top-expressing Cas-CLOVER strains performed well in insecticide trials conducted on Aedes, Culex, and Anopheles larvae and adult mosquitoes, which died following consumption of the yeast. Scaled fermentation facilitated the kilogram-scale production of the yeast, which was subsequently heat-killed and dried. These studies indicate that RNAi yeast insecticide production can be scaled, an advancement that may one day facilitate the global distribution of this new mosquito control intervention.

5.
Ecol Evol ; 11(12): 8363-8380, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34188892

RESUMO

During nectar feeding, mosquitoes ingest a plethora of phytochemicals present in nectar. The ecological and physiological impacts of these ingested phytochemicals on the disease vectors are poorly understood. In this study, we evaluated the effects of three nectar phytochemicals-- caffeine, p-coumaric acid, and quercetin--on longevity, fecundity, and sugar-feeding behavior of the Asian tiger mosquito (Aedes albopictus). Adult females of Ae. albopictus were provided continuous access to 10% sucrose supplemented with one of the three phytochemicals and their fecundity, longevity, and the amount of sucrose consumed determined. Transcriptome response of Ae. albopictus females to p-coumaric acid and quercetin was also evaluated. Dietary quercetin and p-coumaric acid enhanced the longevity of female Ae. albopictus, while caffeine resulted in reduced sugar consumption and enhanced fecundity of gravid females. RNA-seq analyses identified 237 genes that were differentially expressed (DE) in mosquitoes consuming p-coumaric acid or quercetin relative to mosquitoes consuming an unamended sucrose solution diet. Among the DE genes, several encoding antioxidant enzymes, cytochrome P450s, and heat shock proteins were upregulated, whereas histones were downregulated. Overall, our findings show that consuming certain nectar phytochemicals can enhance adult longevity of female Asian tiger mosquitoes, apparently by differentially regulating the expression level of genes involved in longevity and xenobiotic metabolism; this has potential impacts not only on life span but also on vectorial capacity and insecticide resistance.

6.
Parasit Vectors ; 14(1): 83, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33509255

RESUMO

BACKGROUND: The guts of blood-sucking insects host a community of bacteria that can shift dramatically in response to biotic and abiotic factors. Identifying the key factors structuring these microbial communities has important ecological and epidemiological implications. METHODS: We used the yellow fever mosquito, Aedes aegypti, to investigate the impact of mixed blood meals on gut microbiota of vector mosquitoes. Adult females were experimentally fed on sugar or blood from chicken, rabbit or a mixture of chicken and rabbit blood, and their gut microbiota were characterized using 16S rRNA gene amplification and MiSeq sequencing. RESULTS: The gut bacterial communities of mosquitoes fed on the three blood meal treatments clustered separately, suggesting that host species identity and mixed blood-feeding are key determinants of gut bacterial community composition in mosquitoes. Mixed blood meal had a synergistic effect on both operational taxonomic unit (OTU) richness and the Shannon diversity index, suggesting that mixed blood-feeding can offset the nutritional deficit of blood meals from certain host species. The microbial communities observed in this study were distinct from those identified from similarly fed Ae. aegypti from our previous study. CONCLUSIONS: These findings demonstrate that vector host-feeding preferences can influence gut microbial composition and diversity, which could potentially impact pathogen acquisition and transmission by the vector. The results also demonstrate that different microenvironmental conditions within the laboratory may play an important role in structuring the microbial communities of independently reared mosquito colonies.


Assuntos
Aedes , Comportamento Alimentar , Microbioma Gastrointestinal/genética , Aedes/microbiologia , Aedes/fisiologia , Animais , Bactérias/classificação , Sangue , Galinhas , Genes Bacterianos , Refeições , Metagenômica/métodos , Microbiota , Mosquitos Vetores/microbiologia , Mosquitos Vetores/fisiologia , RNA Ribossômico 16S/genética , Coelhos
7.
J Med Entomol ; 56(4): 1055-1063, 2019 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-30855084

RESUMO

The yellow fever mosquito, Aedes aegypti (Diptera: Culicidae) transmits several devastating arboviruses, including dengue, chikungunya, and Zika virus, making development of inexpensive and eco-friendly strategies for its control an urgent priority. We evaluated the lethality of 13 commonly used plant-derived edible oils against late-third instar Ae. aegypti and then tested the three most lethal oils for stage-specific differences in lethality. We also examined the effects of the most lethal (hempseed), moderately lethal (sunflower and peanut), and least lethal (olive) oils on survival to adulthood and oviposition behavior of gravid females. We hypothesized that the insecticidal activity of edible oils is a function of the content of their linoleic acid, a key fatty acid component with film-forming properties. Among the 13 oils tested, hempseed oil was the most lethal, with an LC50 of 348.25 ppm, followed by sesame (670.44 ppm) and pumpkinseed (826.91 ppm) oils. Oils with higher linoleic acid content were more lethal to larvae than those with low linoleic acid content. Furthermore, pure concentrated linoleic acid was more lethal to larvae compared to any edible oil. In comparison to early instars, late instars were more susceptible to hempseed, sunflower, peanut, and olive oils; these oils also acted as oviposition deterrents, with effective repellency ≥63%. The proportion of larvae surviving to adulthood was significantly reduced in hempseed, sunflower, peanut, and olive oil treatments relative to controls. Our results suggest that some edible plant oils have potential as effective, eco-friendly larvicides, and oviposition deterrents for controlling container-dwelling mosquitoes, especially in resource-limited settings.


Assuntos
Aedes , Controle de Mosquitos/métodos , Oviposição/efeitos dos fármacos , Óleos de Plantas/toxicidade , Animais , Feminino , Larva/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA