Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Surg Endosc ; 38(7): 3758-3772, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38789623

RESUMO

BACKGROUND: Hyperspectral imaging (HSI), combined with machine learning, can help to identify characteristic tissue signatures enabling automatic tissue recognition during surgery. This study aims to develop the first HSI-based automatic abdominal tissue recognition with human data in a prospective bi-center setting. METHODS: Data were collected from patients undergoing elective open abdominal surgery at two international tertiary referral hospitals from September 2020 to June 2021. HS images were captured at various time points throughout the surgical procedure. Resulting RGB images were annotated with 13 distinct organ labels. Convolutional Neural Networks (CNNs) were employed for the analysis, with both external and internal validation settings utilized. RESULTS: A total of 169 patients were included, 73 (43.2%) from Strasbourg and 96 (56.8%) from Verona. The internal validation within centers combined patients from both centers into a single cohort, randomly allocated to the training (127 patients, 75.1%, 585 images) and test sets (42 patients, 24.9%, 181 images). This validation setting showed the best performance. The highest true positive rate was achieved for the skin (100%) and the liver (97%). Misclassifications included tissues with a similar embryological origin (omentum and mesentery: 32%) or with overlaying boundaries (liver and hepatic ligament: 22%). The median DICE score for ten tissue classes exceeded 80%. CONCLUSION: To improve automatic surgical scene segmentation and to drive clinical translation, multicenter accurate HSI datasets are essential, but further work is needed to quantify the clinical value of HSI. HSI might be included in a new omics science, namely surgical optomics, which uses light to extract quantifiable tissue features during surgery.


Assuntos
Aprendizado Profundo , Imageamento Hiperespectral , Humanos , Estudos Prospectivos , Imageamento Hiperespectral/métodos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Abdome/cirurgia , Abdome/diagnóstico por imagem , Cirurgia Assistida por Computador/métodos
2.
Cancers (Basel) ; 15(8)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37190325

RESUMO

INTRODUCTION: The changes occurring in the liver in cases of outflow deprivation have rarely been investigated, and no measurements of this phenomenon are available. This investigation explored outflow occlusion in a pig model using a hyperspectral camera. METHODS: Six pigs were enrolled. The right hepatic vein was clamped for 30 min. The oxygen saturation (StO2%), deoxygenated hemoglobin level (de-Hb), near-infrared perfusion (NIR), and total hemoglobin index (THI) were investigated at different time points in four perfused lobes using a hyperspectral camera measuring light absorbance between 500 nm and 995 nm. Differences among lobes at different time points were estimated by mixed-effect linear regression. RESULTS: StO2% decreased over time in the right lateral lobe (RLL, totally occluded) when compared to the left lateral (LLL, outflow preserved) and the right medial (RML, partially occluded) lobes (p < 0.05). De-Hb significantly increased after clamping in RLL when compared to RML and LLL (p < 0.05). RML was further analyzed considering the right portion (totally occluded) and the left portion of the lobe (with an autonomous draining vein). StO2% decreased and de-Hb increased more smoothly when compared to the totally occluded RLL (p < 0.05). CONCLUSIONS: The variations of StO2% and deoxy-Hb could be considered good markers of venous liver congestion.

3.
Surg Endosc ; 37(6): 4525-4534, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36828887

RESUMO

BACKGROUND: Visualization of key anatomical landmarks is required during surgical Trans Abdominal Pre Peritoneal repair (TAPP) of inguinal hernia. The Critical View of the MyoPectineal Orifice (CVMPO) was proposed to ensure correct dissection. An artificial intelligence (AI) system that automatically validates the presence of key and marks during the procedure is a critical step towards automatic dissection quality assessment and video-based competency evaluation. The aim of this study was to develop an AI system that automatically recognizes the TAPP key CVMPO landmarks in hernia repair videos. METHODS: Surgical videos of 160 TAPP procedures were used in this single-center study. A deep neural network-based object detector was developed to automatically recognize the pubic symphysis, direct hernia orifice, Cooper's ligament, the iliac vein, triangle of Doom, deep inguinal ring, and iliopsoas muscle. The system was trained using 130 videos, annotated and verified by two board-certified surgeons. Performance was evaluated in 30 videos of new patients excluded from the training data. RESULTS: Performance was validated in 2 ways: first, single-image validation where the AI model detected landmarks in a single laparoscopic image (mean average precision (MAP) of 51.2%). The second validation is video evaluation where the model detected landmarks throughout the myopectineal orifice visual inspection phase (mean accuracy and F-score of 77.1 and 75.4% respectively). Annotation objectivity was assessed between 2 surgeons in video evaluation, showing a high agreement of 88.3%. CONCLUSION: This study establishes the first AI-based automated recognition of critical structures in TAPP surgical videos, and a major step towards automatic CVMPO validation with AI. Strong performance was achieved in the video evaluation. The high inter-rater agreement confirms annotation quality and task objectivity.


Assuntos
Hérnia Inguinal , Laparoscopia , Cirurgiões , Humanos , Inteligência Artificial , Laparoscopia/métodos , Peritônio , Hérnia Inguinal/cirurgia
4.
Diagnostics (Basel) ; 12(9)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36140626

RESUMO

Complete mesocolic excision (CME), which involves the adequate resection of the tumor-bearing colonic segment with "en bloc" removal of its mesocolon along embryological fascial planes is associated with superior oncological outcomes. However, CME presents a higher complication rate compared to non-CME resections due to a higher risk of vascular injury. Hyperspectral imaging (HSI) is a contrast-free optical imaging technology, which facilitates the quantitative imaging of physiological tissue parameters and the visualization of anatomical structures. This study evaluates the accuracy of HSI combined with deep learning (DL) to differentiate the colon and its mesenteric tissue from retroperitoneal tissue. In an animal study including 20 pig models, intraoperative hyperspectral images of the sigmoid colon, sigmoid mesentery, and retroperitoneum were recorded. A convolutional neural network (CNN) was trained to distinguish the two tissue classes using HSI data, validated with a leave-one-out cross-validation process. The overall recognition sensitivity of the tissues to be preserved (retroperitoneum) and the tissues to be resected (colon and mesentery) was 79.0 ± 21.0% and 86.0 ± 16.0%, respectively. Automatic classification based on HSI and CNNs is a promising tool to automatically, non-invasively, and objectively differentiate the colon and its mesentery from retroperitoneal tissue.

5.
Sensors (Basel) ; 21(20)2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34696147

RESUMO

Thermal ablation is an acceptable alternative treatment for primary liver cancer, of which laser ablation (LA) is one of the least invasive approaches, especially for tumors in high-risk locations. Precise control of the LA effect is required to safely destroy the tumor. Although temperature imaging techniques provide an indirect measurement of the thermal damage, a degree of uncertainty remains about the treatment effect. Optical techniques are currently emerging as tools to directly assess tissue thermal damage. Among them, hyperspectral imaging (HSI) has shown promising results in image-guided surgery and in the thermal ablation field. The highly informative data provided by HSI, associated with deep learning, enable the implementation of non-invasive prediction models to be used intraoperatively. Here we show a novel paradigm "peak temperature prediction model" (PTPM), convolutional neural network (CNN)-based, trained with HSI and infrared imaging to predict LA-induced damage in the liver. The PTPM demonstrated an optimal agreement with tissue damage classification providing a consistent threshold (50.6 ± 1.5 °C) for the damage margins with high accuracy (~0.90). The high correlation with the histology score (r = 0.9085) and the comparison with the measured peak temperature confirmed that PTPM preserves temperature information accordingly with the histopathological assessment.


Assuntos
Aprendizado Profundo , Terapia a Laser , Imageamento Hiperespectral , Lasers , Redes Neurais de Computação
6.
Diagnostics (Basel) ; 11(9)2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34573869

RESUMO

Hyperspectral imaging (HSI) is a non-invasive imaging modality already applied to evaluate hepatic oxygenation and to discriminate different models of hepatic ischemia. Nevertheless, the ability of HSI to detect and predict the reperfusion damage intraoperatively was not yet assessed. Hypoxia caused by hepatic artery occlusion (HAO) in the liver brings about dreadful vascular complications known as ischemia-reperfusion injury (IRI). Here, we show the evaluation of liver viability in an HAO model with an artificial intelligence-based analysis of HSI. We have combined the potential of HSI to extract quantitative optical tissue properties with a deep learning-based model using convolutional neural networks. The artificial intelligence (AI) score of liver viability showed a significant correlation with capillary lactate from the liver surface (r = -0.78, p = 0.0320) and Suzuki's score (r = -0.96, p = 0.0012). CD31 immunostaining confirmed the microvascular damage accordingly with the AI score. Our results ultimately show the potential of an HSI-AI-based analysis to predict liver viability, thereby prompting for intraoperative tool development to explore its application in a clinical setting.

7.
Diagnostics (Basel) ; 11(8)2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34441442

RESUMO

Nerves are critical structures that may be difficult to recognize during surgery. Inadvertent nerve injuries can have catastrophic consequences for the patient and lead to life-long pain and a reduced quality of life. Hyperspectral imaging (HSI) is a non-invasive technique combining photography with spectroscopy, allowing non-invasive intraoperative biological tissue property quantification. We show, for the first time, that HSI combined with deep learning allows nerves and other tissue types to be automatically recognized in in vivo hyperspectral images. An animal model was used, and eight anesthetized pigs underwent neck midline incisions, exposing several structures (nerve, artery, vein, muscle, fat, skin). State-of-the-art machine learning models were trained to recognize these tissue types in HSI data. The best model was a convolutional neural network (CNN), achieving an overall average sensitivity of 0.91 and a specificity of 1.0, validated with leave-one-patient-out cross-validation. For the nerve, the CNN achieved an average sensitivity of 0.76 and a specificity of 0.99. In conclusion, HSI combined with a CNN model is suitable for in vivo nerve recognition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA