Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
3.
Curr Biol ; 33(9): 1865, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37160083
4.
Curr Biol ; 33(7): R251-R254, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-37040702

RESUMO

Cellulose is the chief constituent of the plant cell wall and therefore is the most abundant biopolymer on Earth. However, cellulose synthesis is not limited to the plant kingdom: it is also found in a wide variety of bacteria, as well as in oomycetes, algae, slime mold, and urochordates, which are the only animals that synthesize cellulose. Nevertheless, cellulose synthesis has been mainly studied in plants and bacteria. In plants, cellulose confers mechanical support and protection against environmental stresses, and guides anisotropic cell growth. In bacteria, cellulose secretion is associated with biofilm formation, which protects cells from stresses or host immune responses and allows for community synergy in colonizing surfaces and capturing nutrients. In the context of our society, cellulose is an important part of woody plant biomass and is thus a renewable resource crucial for many industries, whereas bacterial cellulose is used for a plethora of biomedical and bioengineering applications. In addition, biofilms can reduce the susceptibility of bacteria to antibacterial agents and thus increase infection risk; understanding the molecular mechanism behind cellulose synthesis and biofilm formation is therefore of prime importance.In this primer, we aim to highlight the main differences as well as the common features of the molecular mechanism shared by the many species synthesizing cellulose across kingdoms.


Assuntos
Biofilmes , Celulose , Animais , Plantas/metabolismo , Membrana Celular/metabolismo , Parede Celular/metabolismo , Bactérias/metabolismo
5.
Mol Plant ; 16(1): 206-231, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36564945

RESUMO

All plant cells are surrounded by a cell wall that provides cohesion, protection, and a means of directional growth to plants. Cellulose microfibrils contribute the main biomechanical scaffold for most of these walls. The biosynthesis of cellulose, which typically is the most prominent constituent of the cell wall and therefore Earth's most abundant biopolymer, is finely attuned to developmental and environmental cues. Our understanding of the machinery that catalyzes and regulates cellulose biosynthesis has substantially improved due to recent technological advances in, for example, structural biology and microscopy. Here, we provide a comprehensive overview of the structure, function, and regulation of the cellulose synthesis machinery and its regulatory interactors. We aim to highlight important knowledge gaps in the field, and outline emerging approaches that promise a means to close those gaps.


Assuntos
Embriófitas , Celulose , Plantas , Parede Celular , Glucosiltransferases
6.
Plant Cell ; 34(1): 302-332, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34010411

RESUMO

Phosphoinositides are low-abundant lipids that participate in the acquisition of membrane identity through their spatiotemporal enrichment in specific compartments. Phosphatidylinositol 4-phosphate (PI4P) accumulates at the plant plasma membrane driving its high electrostatic potential, and thereby facilitating interactions with polybasic regions of proteins. PI4Kα1 has been suggested to produce PI4P at the plasma membrane, but how it is recruited to this compartment is unknown. Here, we pin-point the mechanism that tethers Arabidopsis thaliana phosphatidylinositol 4-kinase alpha1 (PI4Kα1) to the plasma membrane via a nanodomain-anchored scaffolding complex. We established that PI4Kα1 is part of a complex composed of proteins from the NO-POLLEN-GERMINATION, EFR3-OF-PLANTS, and HYCCIN-CONTAINING families. Comprehensive knockout and knockdown strategies revealed that subunits of the PI4Kα1 complex are essential for pollen, embryonic, and post-embryonic development. We further found that the PI4Kα1 complex is immobilized in plasma membrane nanodomains. Using synthetic mis-targeting strategies, we demonstrate that a combination of lipid anchoring and scaffolding localizes PI4Kα1 to the plasma membrane, which is essential for its function. Together, this work opens perspectives on the mechanisms and function of plasma membrane nanopatterning by lipid kinases.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regiões de Interação com a Matriz , Antígenos de Histocompatibilidade Menor/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Arabidopsis/enzimologia , Proteínas de Arabidopsis/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo
7.
Nat Commun ; 12(1): 4267, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34257291

RESUMO

The lipid composition of organelles acts as a landmark to define membrane identity and specify subcellular function. Phosphoinositides are anionic lipids acting in protein sorting and trafficking at the trans-Golgi network (TGN). In animal cells, sphingolipids control the turnover of phosphoinositides through lipid exchange mechanisms at endoplasmic reticulum/TGN contact sites. In this study, we discover a mechanism for how sphingolipids mediate phosphoinositide homeostasis at the TGN in plant cells. Using multiple approaches, we show that a reduction of the acyl-chain length of sphingolipids results in an increased level of phosphatidylinositol-4-phosphate (PtdIns(4)P or PI4P) at the TGN but not of other lipids usually coupled to PI4P during exchange mechanisms. We show that sphingolipids mediate Phospholipase C (PLC)-driven consumption of PI4P at the TGN rather than local PI4P synthesis and that this mechanism is involved in the polar sorting of the auxin efflux carrier PIN2 at the TGN. Together, our data identify a mode of action of sphingolipids in lipid interplay at the TGN during protein sorting.


Assuntos
Fosfatidilinositóis/metabolismo , Esfingolipídeos/metabolismo , Rede trans-Golgi/metabolismo , Animais , Retículo Endoplasmático/metabolismo , Humanos , Fosfatidilinositóis/genética , Esfingolipídeos/genética , Fosfolipases Tipo C/metabolismo , Rede trans-Golgi/genética
8.
Curr Biol ; 31(1): 228-237.e10, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33157019

RESUMO

Plants are able to orient their growth according to gravity, which ultimately controls both shoot and root architecture.1 Gravitropism is a dynamic process whereby gravistimulation induces the asymmetric distribution of the plant hormone auxin, leading to asymmetric growth, organ bending, and subsequent reset of auxin distribution back to the original pre-gravistimulation situation.1-3 Differential auxin accumulation during the gravitropic response depends on the activity of polarly localized PIN-FORMED (PIN) auxin-efflux carriers.1-4 In particular, the timing of this dynamic response is regulated by PIN2,5,6 but the underlying molecular mechanisms are poorly understood. Here, we show that MEMBRANE ASSOCIATED KINASE REGULATOR2 (MAKR2) controls the pace of the root gravitropic response. We found that MAKR2 is required for the PIN2 asymmetry during gravitropism by acting as a negative regulator of the cell-surface signaling mediated by the receptor-like kinase TRANSMEMBRANE KINASE1 (TMK1).2,7-10 Furthermore, we show that the MAKR2 inhibitory effect on TMK1 signaling is antagonized by auxin itself, which triggers rapid MAKR2 membrane dissociation in a TMK1-dependent manner. Our findings suggest that the timing of the root gravitropic response is orchestrated by the reversible inhibition of the TMK1 signaling pathway at the cell surface.


Assuntos
Proteínas de Arabidopsis/metabolismo , Gravitropismo/fisiologia , Ácidos Indolacéticos/metabolismo , Proteínas de Membrana/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Arabidopsis/antagonistas & inibidores , Proteínas de Arabidopsis/genética , Mutação com Ganho de Função , Gravitação , Mutação com Perda de Função , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Plantas Geneticamente Modificadas , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais/fisiologia
9.
Annu Rev Plant Biol ; 71: 71-102, 2020 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-32442391

RESUMO

Anionic phospholipids, which include phosphatidic acid, phosphatidylserine, and phosphoinositides, represent a small percentage of membrane lipids. They are able to modulate the physical properties of membranes, such as their surface charges, curvature, or clustering of proteins. Moreover, by mediating interactions with numerous membrane-associated proteins, they are key components in the establishment of organelle identity and dynamics. Finally, anionic lipids also act as signaling molecules, as they are rapidly produced or interconverted by a set of dedicated enzymes. As such, anionic lipids are major regulators of many fundamental cellular processes, including cell signaling, cell division, membrane trafficking, cell growth, and gene expression. In this review, we describe the functions of anionic lipids from a cellular perspective. Using the localization of each anionic lipid and its related metabolic enzymes as starting points, we summarize their roles within the different compartments of the endomembrane system and address their associated developmental and physiological consequences.


Assuntos
Fosfatidilinositóis , Plantas , Membrana Celular , Lipídeos de Membrana , Fosfolipídeos , Transdução de Sinais
10.
Methods Mol Biol ; 1992: 189-199, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31148039

RESUMO

Anionic phospholipids represent only minor fraction of cell membranes lipids but they are critically important for many membrane-related processes, including membrane identity, charge, shape, the generation of second messengers, and the recruitment of peripheral proteins. The main anionic phospholipids of the plasma membrane are phosphoinositides phosphatidylinositol 4-phosphate (PI4P), phosphatidylinositol 4,5-bisphosphate (PI4,5P2), phosphatidylserine (PS), and phosphatidic acid (PA). Recent insights in the understanding of the nature of protein-phospholipid interactions enabled the design of genetically encoded fluorescent molecular probes that can interact with various phospholipids in a specific manner allowing their imaging in live cells. Here, we describe the use of transiently transformed plant cells to study phospholipid-dependent membrane recruitment.


Assuntos
Corantes Fluorescentes/análise , Microscopia de Fluorescência/métodos , Nicotiana/citologia , Fosfolipídeos/análise , Células Vegetais/química , Corantes Fluorescentes/metabolismo , Expressão Gênica , Proteínas Luminescentes/análise , Proteínas Luminescentes/genética , Microscopia Confocal/métodos , Fosfatidilinositóis/análise , Fosfatidilinositóis/metabolismo , Fosfolipídeos/metabolismo , Células Vegetais/metabolismo , Pólen/química , Pólen/genética , Nicotiana/química , Nicotiana/genética , Transformação Genética
11.
Dev Cell ; 45(4): 465-480.e11, 2018 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-29754803

RESUMO

Membrane surface charge is critical for the transient, yet specific recruitment of proteins with polybasic regions to certain organelles. In eukaryotes, the plasma membrane (PM) is the most electronegative compartment of the cell, which specifies its identity. As such, membrane electrostatics is a central parameter in signaling, intracellular trafficking, and polarity. Here, we explore which are the lipids that control membrane electrostatics using plants as a model. We show that phosphatidylinositol-4-phosphate (PI4P), phosphatidic acidic (PA), and phosphatidylserine (PS) are separately required to generate the electrostatic signature of the plant PM. In addition, we reveal the existence of an electrostatic territory that is organized as a gradient along the endocytic pathway and is controlled by PS/PI4P combination. Altogether, we propose that combinatorial lipid composition of the cytosolic leaflet of organelles not only defines the electrostatic territory but also distinguishes different functional compartments within this territory by specifying their varying surface charges.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Membrana Celular/metabolismo , Ácidos Fosfatídicos/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilserinas/metabolismo , Eletricidade Estática , Arabidopsis/crescimento & desenvolvimento , Organelas , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Transdução de Sinais
12.
Curr Opin Plant Biol ; 40: 22-33, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28734137

RESUMO

Each phosphoinositide (PI, also known as phosphatidylinositol phosphate, polyphosphoinositide, PtdInsP or PIP) species is partitioned in the endomembrane system and thereby contributes to the identity of membrane compartments. However, membranes are in constant flux within this system, which raises the questions of how the spatiotemporal pattern of phosphoinositides is established and maintained within the cell. Here, we review the general mechanisms by which phosphoinositides and membrane trafficking feedbacks on each other to regulate cellular patterning. We then use the specific examples of polarized trafficking, endosomal sorting and vacuolar biogenesis to illustrate these general concepts.


Assuntos
Endossomos/metabolismo , Biogênese de Organelas , Fosfatidilinositóis/metabolismo , Plantas/metabolismo , Vacúolos/fisiologia , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA