Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Synth Biol ; 12(5): 1437-1446, 2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37155350

RESUMO

Artificial cells are membrane vesicles mimicking cellular functions. To date, giant unilamellar vesicles made from a single lipid membrane with a diameter of 10 µm or more have been used to create artificial cells. However, the creation of artificial cells that mimic the membrane structure and size of bacteria has been limited due to technical restrictions of conventional liposome preparation methods. Here, we created bacteria-sized large unilamellar vesicles (LUVs) with proteins localized asymmetrically to the lipid bilayer. Liposomes containing benzylguanine-modified phospholipids were prepared by combining the conventional water-in-oil emulsion method and the extruder method, and green fluorescent protein fused with SNAP-tag was localized to the inner leaflet of the lipid bilayer. Biotinylated lipid molecules were then inserted externally, and the outer leaflet was modified with streptavidin. The resulting liposomes had a size distribution in the range of 500-2000 nm with a peak at 841 nm (the coefficient of variation was 10.3%), which was similar to that of spherical bacterial cells. Fluorescence microscopy, quantitative evaluation using flow cytometry, and western blotting proved the intended localization of different proteins on the lipid membrane. Cryogenic electron microscopy and quantitative evaluation by α-hemolysin insertion revealed that most of the created liposomes were unilamellar. Our simple method for the preparation of bacteria-sized LUVs with asymmetrically localized proteins will contribute to the creation of artificial bacterial cells for investigating functions and the significance of their surface structure and size.


Assuntos
Lipossomos , Lipossomas Unilamelares , Lipossomos/química , Lipossomas Unilamelares/química , Bicamadas Lipídicas/química , Fosfolipídeos , Microscopia de Fluorescência , Bactérias
2.
J Am Chem Soc ; 141(48): 19058-19066, 2019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31697479

RESUMO

The bacterial cell surface structure has important roles for various cellular functions. However, research on reconstituting bacterial cell surface structures is limited. This study aimed to bottom-up create a cell-sized liposome covered with AtaA, the adhesive bacterionanofiber protein localized on the cell surface of Acinetobacter sp. Tol 5, without the use of the protein secretion and assembly machineries. Liposomes containing a benzylguanine derivative-modified phospholipid were decorated with a truncated AtaA protein fused to a SNAP-tag expressed in a soluble fraction in Escherichia coli. The obtained liposome showed a similar surface structure and function to that of native Tol 5 cells and adhered to both hydrophobic and hydrophilic solid surfaces. Furthermore, this artificial cell was able to drive an enzymatic reaction in the adhesive state. The developed artificial cellular system will allow for analysis of not only AtaA, but also other cell surface proteins under a cell-mimicking environment. In addition, AtaA-decorated artificial cells may inspire the development of biotechnological applications that require immobilization of cells onto a variety of solid surfaces, in particular, in environments where the use of genetically modified organisms is prohibited.


Assuntos
Acinetobacter/química , Adesivos/química , Células Artificiais/química , Proteínas de Bactérias/química , Nanofibras/química , Células Artificiais/citologia , Biocatálise , Guanina/análogos & derivados , Interações Hidrofóbicas e Hidrofílicas , Lipossomos/química , Fosfolipídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA