Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 42(11): 113436, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37952157

RESUMO

Skeletal muscle has recently arisen as a regulator of central nervous system (CNS) function and aging, secreting bioactive molecules known as myokines with metabolism-modifying functions in targeted tissues, including the CNS. Here, we report the generation of a transgenic mouse with enhanced skeletal muscle lysosomal and mitochondrial function via targeted overexpression of transcription factor E-B (TFEB). We discovered that the resulting geroprotective effects in skeletal muscle reduce neuroinflammation and the accumulation of tau-associated pathological hallmarks in a mouse model of tauopathy. Muscle-specific TFEB overexpression significantly ameliorates proteotoxicity, reduces neuroinflammation, and promotes transcriptional remodeling of the aged CNS, preserving cognition and memory in aged mice. Our results implicate the maintenance of skeletal muscle function throughout aging in direct regulation of CNS health and disease and suggest that skeletal muscle originating factors may act as therapeutic targets against age-associated neurodegenerative disorders.


Assuntos
Doenças Neurodegenerativas , Camundongos , Animais , Fatores de Transcrição , Doenças Neuroinflamatórias , Músculo Esquelético , Camundongos Transgênicos , Envelhecimento , Sistema Nervoso Central , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos
2.
PLoS One ; 10(4): e0119068, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25879540

RESUMO

Genetic studies indicate that aging is modulated by a great number of genetic pathways. We have used Drosophila longevity and stress assays to test a multipath intervention strategy. To carry out this strategy, we supplemented the flies with herbal extracts (SC100) that are predicted to modulate the expression of many genes involved in aging and stress resistance, such as mTOR, NOS, NF-KappaB, and VEGF. When flies were housed in large cages with SC100 added, daily mortality rates of both male and female flies were greatly diminished in mid to late life. Surprisingly, SC100 also stabilized midlife mortality rate increases so as to extend the maximum life span substantially beyond the limits previously reported for D. melanogaster. Under these conditions, SC100 also promoted robust resistance to partial starvation stress and to heat stress. Fertility was the same initially in both treated and control flies, but it became significantly higher in treated flies at older ages as the fertility of control flies declined. Mean and maximum life spans of flies in vials at the same test site were also extended by SC100, but the life spans were short in absolute terms. In contrast, at an independent test site where stress was minimized, the flies exhibited much longer mean life spans, but the survival curves became highly rectangular and the effects of SC100 on both mean and maximum life spans declined greatly or were abolished. The data indicate that SC100 is a novel herbal mix with striking effects on enhancing Drosophila stress resistance and life span in some environments, while minimizing mid to late life mortality rates. They also show that the environment and other factors can have transformative effects on both the length and distribution of survivorship, and on the ability of SC100 to extend the life span.


Assuntos
Suplementos Nutricionais , Medicina Herbária , Expectativa de Vida , Estresse Fisiológico , Animais , Drosophila , Feminino , Masculino
3.
J Gerontol A Biol Sci Med Sci ; 68(10): 1157-69, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23729660

RESUMO

The hypothesis tested in this study was that single-gene mutations found previously to extend the life span of Drosophila melanogaster could do so consistently in both long-lived y w and standard w (1118) genetic backgrounds. GAL4 drivers were used to express upstream activation sequence (UAS)-responder transgenes globally or in the nervous system. Transgenes associated with oxidative damage prevention (UAS-hSOD1 and UAS-GCLc) or removal (EP-UAS-Atg8a and UAS-dTOR (FRB) ) failed to increase mean life spans in any expression pattern in either genetic background. Flies containing a UAS-EGFP-bMSRA (C) transgene associated with protein repair were found not to exhibit life extension or detectable enhanced green fluorescent protein (EGFP) activity. The presence of UAS-responder transgenes was confirmed by PCR amplification and sequencing at the 5' and 3' end of each insertion. These results cast doubt on the robustness of life extension in flies carrying single-gene mutations and suggest that the effects of all such mutations should be tested independently in multiple genetic backgrounds and laboratory environments.


Assuntos
Drosophila melanogaster/genética , Genes de Insetos , Longevidade/genética , Mutação , Animais , Animais Geneticamente Modificados , Encéfalo/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/fisiologia , Feminino , Expressão Gênica , Proteínas de Fluorescência Verde/genética , Peptídeos e Proteínas de Sinalização Intercelular , Longevidade/fisiologia , Masculino , Metionina Sulfóxido Redutases/genética , Proteínas Nucleares/genética , Proteínas Recombinantes/genética , Superóxido Dismutase/genética , Superóxido Dismutase-1 , Serina-Treonina Quinases TOR/genética , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA