RESUMO
We constructed a simple device, which utilized laser-induced breakdown spectroscopy to image H2 gas leaking from the surfaces of hydrogen fuel cells to ambient air. Nanosecond laser pulses of wavelength lambda=532 nm emitted from a neodymium-doped yttrium aluminum garnet laser were first compressed to a pulse length Deltat<1 ns using a stimulated Brillouin backscattering cell. Relay-imaging optics then focused this beam onto the H(2) leak and initiated the breakdown plasma. The Balmer-alpha (H-alpha) emission that emerged from this was collected with a 2-m-long macrolens assembly with a 90-mm-diameter image area, which covered a solid angle of approximately 1 x 10(-3)pi steradians seen from the plasma. The H-alpha light was isolated by two 100-mm-diameter interference filters with a 2 nm bandpass, and imaged by a thermoelectrically cooled charge-coupled device camera. By scanning the position of the laser focus, the spatial distribution of H2 gas over a 90-mm-diameter area was photographed with a spatial resolution of < or = 5 mm. Photoionization of the water vapor in the air caused a strong H-alpha background. By using pure N2 as a buffer gas, H2 leaks with rates of <1 cc/min were imaged. We also studied the possibilities of detecting He, Ne, or Xe gas leaks.