Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 305
Filtrar
1.
J Am Chem Soc ; 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39377578

RESUMO

Oxygenation of hydrocarbons offers versatile catalytic routes to more valuable compounds, such as alcohols, aldehydes, and ketones. Despite the importance of monometallic copper-oxygen species as hydroxylating agents in biology, few synthetic model compounds are known to react with hydrocarbons, owing to high C-H bond dissociation energies. To overcome this challenge, the photoredox chemistry of monometallic copper (pyrazolyl)borate complexes coordinated by chlorate has been explored in the presence of C1-C6 alkanes with BDEs ≥ 93 kcal/mol. Ethane is photooxidized at room temperature under N2 with yields of 15-30%, which increases to 77% for the most oxidizing tris(3,5-trifluoromethyl-pyrazolyl)borate complex (Cu-3). This complex also promotes the photooxidation of methane to methanol in significant yield (38%) when the photoredox reaction is run under aerobic conditions. Ligand modification alters the reaction selectivity by tuning the redox potential. The ability to activate 1° C-H bonds of C1-C6 alkanes using visible light is consistent with the photogeneration of a powerfully oxidizing copper-oxyl, which is supported by photocrystallographic studies of the tris(3,4,5-tribromopyrazolyl)borate chlorate complex. Mechanistic studies are consistent with the hydrogen atom abstraction of the C-H bond by the copper-oxyl intermediate. We demonstrate for Cu-3 with hexane as an exemplar, that the photoredox chemistry may be achieved under solar conditions of one-sun illumination.

2.
Biochemistry ; 63(19): 2440-2448, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39264328

RESUMO

Nonvesicular lipid trafficking pathways are an important process in every domain of life. The mechanisms of these processes are poorly understood in part due to the difficulty in kinetic characterization. One important class of glycolipids, lipopolysaccharides (LPS), are the primary lipidic component of the outer membrane of Gram-negative bacteria. LPS are synthesized in the inner membrane and then trafficked to the cell surface by the lipopolysaccharide transport proteins, LptB2FGCADE. By characterizing the interaction of a fluorescent probe and LPS, we establish a quantitative assay to monitor the flux of LPS between proteoliposomes on the time scale of seconds. We then incorporate photocaged ATP into this system, which allows for light-based control of the initiation of LPS transport. This control allows us to measure the initial rate of LPS transport (3.0 min-1 per LptDE). We also find that the rate of LPS transport by the Lpt complex is independent of the structure of LPS. In contrast, we find the rate of LPS transport is dependent on the proper function of the LptDE complex. Mutants of the outer membrane Lpt components, LptDE, that cause defective LPS assembly in live cells display attenuated transport rates and slower ATP hydrolysis compared to wild type proteins. Analysis of these mutants reveals that the rates of ATP hydrolysis and LPS transport are correlated such that 1.2 ± 0.2 ATP are hydrolyzed for each LPS transported. This correlation suggests a model where the outer membrane components ensure the coupling of ATP hydrolysis and LPS transport by stabilizing a transport-active state of the Lpt bridge.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Lipopolissacarídeos , Lipopolissacarídeos/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Transporte Biológico , Escherichia coli/metabolismo , Escherichia coli/genética , Cinética , Trifosfato de Adenosina/metabolismo , Proteolipídeos/metabolismo , Proteolipídeos/química , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Transportadores de Cassetes de Ligação de ATP
3.
Proc Natl Acad Sci U S A ; 121(18): e2317291121, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38648489

RESUMO

Ribonucleotide reductases (RNRs) are essential enzymes that catalyze the de novo transformation of nucleoside 5'-di(tri)phosphates [ND(T)Ps, where N is A, U, C, or G] to their corresponding deoxynucleotides. Despite the diversity of factors required for function and the low sequence conservation across RNRs, a unifying apparatus consolidating RNR activity is explored. We combine aspects of the protein subunit simplicity of class II RNR with a modified version of Escherichia coli class la photoRNRs that initiate radical chemistry with light to engineer a mimic of a class II enzyme. The design of this RNR involves fusing a truncated form of the active site containing α subunit with the functionally important C-terminal tail of the radical-generating ß subunit to render a chimeric RNR. Inspired by a recent cryo-EM structure, a [Re] photooxidant is located adjacent to Y356[ß], which is an essential component of the radical transport pathway in class I RNRs. Combination of this RNR photochimera with cytidine diphosphate (CDP), adenosine triphosphate (ATP), and light resulted in the generation of Y356• along with production of deoxycytidine diphosphate (dCDP) and cytosine. The photoproducts reflect an active site chemistry consistent with both the consensus mechanism of RNR and chemistry observed when RNR is inactivated by mechanism-based inhibitors in the active site. The enzymatic activity of the RNR photochimera in the absence of any ß metallocofactor highlights the adaptability of the 10-stranded αß barrel finger loop to support deoxynucleotide formation and accommodate the design of engineered RNRs.


Assuntos
Escherichia coli , Engenharia de Proteínas , Ribonucleotídeo Redutases , Ribonucleotídeo Redutases/metabolismo , Ribonucleotídeo Redutases/química , Ribonucleotídeo Redutases/genética , Engenharia de Proteínas/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Domínio Catalítico , Evolução Molecular , Modelos Moleculares , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/química
4.
Science ; 383(6680): 279-284, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38096334

RESUMO

Molecular Ag(II) complexes are superoxidizing photoredox catalysts capable of generating radicals from redox-reticent substrates. In this work, we exploited the electrophilicity of Ag(II) centers in [Ag(bpy)2(TFA)][OTf] and Ag(bpy)(TFA)2 (bpy, 2,2'-bipyridine; OTf, CF3SO3-) complexes to activate trifluoroacetate (TFA) by visible light-induced homolysis. The resulting trifluoromethyl radicals may react with a variety of arenes to forge C(sp2)-CF3 bonds. This methodology is general and extends to other perfluoroalkyl carboxylates of higher chain length (RFCO2-; RF, CF2CF3 or CF2CF2CF3). The photoredox reaction may be rendered electrophotocatalytic by regenerating the Ag(II) complexes electrochemically during irradiation. Electrophotocatalytic perfluoroalkylation of arenes at turnover numbers exceeding 20 was accomplished by photoexciting the Ag(II)-TFA ligand-to-metal charge transfer (LMCT) state, followed by electrochemical reoxidation of the Ag(I) photoproduct back to the Ag(II) photoreactant.

5.
J Am Chem Soc ; 145(49): 26720-26727, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38051161

RESUMO

Separation of carbon dioxide (CO2) from point sources or directly from the atmosphere can contribute crucially to climate change mitigation plans in the coming decades. A fundamental practical limitation for the current strategies is the considerable energy cost required to regenerate the sorbent and release the captured CO2 for storage or utilization. A directly photochemically driven system that demonstrates efficient passive capture and on-demand CO2 release triggered by sunlight as the sole external stimulus would provide an attractive alternative. However, little is known about the thermodynamic requirements for such a process or mechanisms for modulating the stability of CO2-derived dissolved species by using photoinduced metastable states. Here, we show that an organic photoswitchable molecule of precisely tuned effective acidity can repeatedly capture and release a near-stoichiometric quantity of CO2 according to dark-light cycles. The CO2-derived species rests as a solvent-separated ion pair, and key aspects of its excited-state dynamics that regulate the photorelease efficiency are characterized by transient absorption spectroscopy. The thermodynamic and kinetic concepts established herein will serve as guiding principles for the development of viable solar-powered negative emission technologies.

6.
Chem Sci ; 14(47): 13776-13782, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38075656

RESUMO

The triplet excited states of ketones are found to effect selective H-atom abstraction from strong amide N-H bonds in the presence of weaker C-H bonds through a proton-coupled electron transfer (PCET) pathway. This chemoselectivity, which results from differences in ionization energies (IEs) between functional groups rather than bond dissociation energies (BDEs) arises from the asynchronicity between electron and proton transfer in the PCET process. We show how this strategy may be leveraged to achieve the intramolecular anti-Markovnikov hydroamidation of alkenes to form lactams using camphorquinone as an inexpensive and sustainable photocatalyst.

7.
Angew Chem Int Ed Engl ; 62(49): e202312128, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37857567

RESUMO

Electrochemical approaches to form C(sp2 )-C(sp3 ) bonds have focused on coupling C(sp3 ) electrophiles that form stabilized carbon-centered radicals upon reduction or oxidation. Whereas alkyl bromides are desirable C(sp3 ) coupling partners owing to their availability and cost-effectiveness, their tendency to undergo radical-radical homocoupling makes them challenging substrates for electroreductive cross-coupling. Herein, we disclose a metal-free regioselective cross-coupling of 1,4-dicyanobenzene, a useful precursor to aromatic nitriles, and alkyl bromides. Alkyl bromide reduction is mediated directly by 1,4-dicyanobenzene radical anions, leading to negligible homocoupling and high cross-selectivity to form 1,4-alkyl cyanobenzenes. The cross-coupling scheme is compatible with oxidatively sensitive and acidic functional groups such as amines and alcohols, which have proven difficult to incorporate in alternative electrochemical approaches using carboxylic acids as C(sp3 ) precursors.

8.
J Am Chem Soc ; 145(40): 22213-22221, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37751528

RESUMO

Carbonate formation presents a major challenge to energy storage applications based on low-temperature CO2 electrolysis and recyclable metal-air batteries. While direct electrochemical oxidation of (bi)carbonate represents a straightforward route for carbonate management, knowledge of the feasibility and mechanisms of direct oxidation is presently lacking. Herein, we report the isolation and characterization of the bis(triphenylphosphine)iminium salts of bicarbonate and peroxybicarbonate, thus enabling the examination of their oxidation chemistry. Infrared spectroelectrochemistry combined with time-resolved infrared spectroscopy reveals that the photoinduced oxidation of HCO3- by an Ir(III) photoreagent results in the generation of the short-lived bicarbonate radical in less than 50 ns. The highly acidic bicarbonate radical undergoes proton transfer with HCO3- to furnish the carbonate radical anion and H2CO3, leading to the eventual release of CO2 and H2O, thus accounting for the appearance of H2O and CO2 in both electrochemical and photochemical oxidation experiments. The back reaction of the carbonate radical subsequently oxidizes the Ir(II) photoreagent, leading to carbonate. In the absence of this back reaction, dimerization of the carbonate radical provides entry into peroxybicarbonate, which we show undergoes facile oxidation to O2 and CO2. Together, the results reported identify tangible pathways for the design of catalysts for the management of carbonate in energy storage applications.

9.
Chem Sci ; 14(25): 6876-6881, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37389245

RESUMO

Disulfides are involved in a broad range of radical-based synthetic organic and biochemical transformations. In particular, the reduction of a disulfide to the corresponding radical anion, followed by S-S bond cleavage to yield a thiyl radical and a thiolate anion plays critical roles in radical-based photoredox transformations and the disulfide radical anion in conjunction with a proton donor, mediates the enzymatic synthesis of deoxynucleotides from nucleotides within the active site of the enzyme, ribonucleotide reductase (RNR). To gain fundamental thermodynamic insight into these reactions, we have performed experimental measurements to furnish the transfer coefficient from which the standard E0(RSSR/RSSR˙-) reduction potential has been determined for a homologous series of disulfides. The electrochemical potentials are found to be strongly dependent on the structures and electronic properties of the substituents of the disulfides. In the case of cysteine, a standard potential of E0(RSSR/RSSR˙-) = -1.38 V vs. NHE is determined, making the disulfide radical anion of cysteine one of the most reducing cofactors in biology.

10.
J Am Chem Soc ; 145(9): 5145-5154, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36812162

RESUMO

Ribonucleotide reductases (RNRs) play an essential role in the conversion of nucleotides to deoxynucleotides in all organisms. The Escherichia coli class Ia RNR requires two homodimeric subunits, α and ß. The active form is an asymmetric αα'ßß' complex. The α subunit houses the site for nucleotide reduction initiated by a thiyl radical (C439•), and the ß subunit houses the diferric-tyrosyl radical (Y122•) that is essential for C439• formation. The reactions require a highly regulated and reversible long-range proton-coupled electron transfer pathway involving Y122•[ß] ↔ W48?[ß] ↔ Y356[ß] ↔ Y731[α] ↔ Y730[α] ↔ C439[α]. In a recent cryo-EM structure, Y356[ß] was revealed for the first time and it, along with Y731[α], spans the asymmetric α/ß interface. An E52[ß] residue, which is essential for Y356 oxidation, allows access to the interface and resides at the head of a polar region comprising R331[α], E326[α], and E326[α'] residues. Mutagenesis studies with canonical and unnatural amino acid substitutions now suggest that these ionizable residues are important in enzyme activity. To gain further insights into the roles of these residues, Y356• was photochemically generated using a photosensitizer covalently attached adjacent to Y356[ß]. Mutagenesis studies, transient absorption spectroscopy, and photochemical assays monitoring deoxynucleotide formation collectively indicate that the E52[ß], R331[α], E326[α], and E326[α'] network plays the essential role of shuttling protons associated with Y356 oxidation from the interface to bulk solvent.


Assuntos
Prótons , Ribonucleotídeo Redutases , Transporte de Elétrons , Ribonucleotídeo Redutases/química , Modelos Moleculares , Oxirredução , Escherichia coli/metabolismo
11.
J Am Chem Soc ; 145(9): 4989-4993, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36848225

RESUMO

Whereas the emphasis of water splitting is typically on hydrogen generation, there is value in the oxygen produced, especially in the undersea environment and for medicinal applications in the developing world. The generation of pure and breathable oxygen from abundant and accessible sources of water, such as brine and seawater, is challenging owing to the prevalence of the competing halide oxidation reaction to produce halogen and hypohalous acids. We show here that pure O2 may be generated from briny water by using an oxygen evolution catalyst with an overlayer that fulfills the criteria of (i) possessing a point of zero charge that results in halide anion rejection and (ii) promoting the disproportionation of hypohalous acids.

12.
Inorg Chem ; 62(1): 3-17, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36538590

RESUMO

Metallophilic interactions between closed-shell metal centers are exemplified by d10 ions, with Au(I) aurophilic interactions as the archetype. Such an interaction extends to d8 species, and examples involving Au(III) are prevalent. Conversely, Ag(III) argentophilic interactions are uncommon. Here, we identify argentophilic interactions in silver corroles, which are authentic Ag(III) species. The crystal structure of a monomeric silver corrole is a dimer in the solid state, and the macrocycle exhibits an atypical domed conformation. In order to evaluate whether this represents an authentic metallophilic interaction or a crystal-packing artifact, the analogous cofacial or "pacman" corrole was prepared. The conformation of the monomer was recapitulated in the silver pacman corrole, exhibiting a short 3.67 Å distance between metal centers and a significant compression of the xanthene backbone. Theoretical calculations support the presence of a rare Ag(III)···Ag(III) argentophilic interaction in the pacman complex.


Assuntos
Porfirinas , Prata , Prata/química , Porfirinas/química , Conformação Molecular
13.
Inorg Chem ; 61(50): 20288-20298, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36459671

RESUMO

The electronic structure of copper corroles has been a topic of debate and revision since the advent of corrole chemistry. The ground state of these compounds is best described as an antiferromagnetically coupled Cu(II) corrole radical cation. In coordinating solvents, these molecules become paramagnetic, and this is often accompanied by a color change. The underlying chemistry of these solvent-induced properties is currently unknown. Here, we show that a coordinating solvent, such as pyridine, induces a change in the ground spin state from an antiferromagnetically coupled Cu(II) corrole radical cation to a ferromagnetically coupled triplet. Over time, the triplet reacts to produce a species with spectral signatures that are characteristic of the one-electron-reduced Cu(II) corrole. These observations account for the solvent-induced paramagnetism and the associated color changes that have been observed for copper corroles in coordinating solvents.


Assuntos
Cobre , Porfirinas , Cobre/química , Solventes , Porfirinas/química , Elétrons
14.
Proc Natl Acad Sci U S A ; 119(37): e2210538119, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36067303

RESUMO

Microbes can provide a more sustainable and energy-efficient method of food and nutrient production compared to plant and animal sources, but energy-intensive carbon (e.g., sugars) and nitrogen (e.g., ammonia) inputs are required. Gas-fixing microorganisms that can grow on H2 from renewable water splitting and gaseous CO2 and N2 offer a renewable path to overcoming these limitations but confront challenges owing to the scarcity of genetic engineering in such organisms. Here, we demonstrate that the hydrogen-oxidizing carbon- and nitrogen-fixing microorganism Xanthobacter autotrophicus grown on a CO2/N2/H2 gas mixture can overproduce the vitamin riboflavin (vitamin B2). We identify plasmids and promoters for use in this bacterium and employ a constitutive promoter to overexpress riboflavin pathway enzymes. Riboflavin production is quantified at 15 times that of the wild-type organism. We demonstrate that riboflavin overproduction is maintained when the bacterium is grown under hybrid inorganic-biological conditions, in which H2 from water splitting, along with CO2 and N2, is fed to the bacterium, establishing the viability of the approach to sustainably produce food and nutrients.


Assuntos
Dióxido de Carbono , Nitrogênio , Riboflavina , Xanthobacter , Dióxido de Carbono/metabolismo , Nitrogênio/metabolismo , Riboflavina/biossíntese , Água/química , Xanthobacter/crescimento & desenvolvimento , Xanthobacter/metabolismo
15.
Inorg Chem ; 61(31): 12308-12317, 2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35892197

RESUMO

The monoanionic tetrapyrrolic macrocycle B,C-tetradehydrocorrin (TDC) resides chemically between corroles and corrins. This chemical space remains largely unexplored due to a lack of reliable synthetic strategies. We now report the preparation and characterization of Co(II)- and Ni(II)-metalated TDC derivatives ([Co-TDC]+ and [Ni-TDC]+, respectively) with a combination of crystallographic, electrochemical, computational, and spectroscopic techniques. [Ni-TDC]+ was found to undergo primarily ligand-centered electrochemical reduction, leading to hydrogenation of the macrocycle under cathodic electrolysis in the presence of acid. Transient absorption (TA) spectroscopy reveals that [Ni-TDC]+ and the two-electron-reduced [Ni-TDC]- possess long-lived excited states, whereas the excited state of singly reduced [Ni-TDC] exhibits picosecond dynamics. The Co(I) compound [Co-TDC] is air stable, highlighting the notable property of the TDC ligand to stabilize low-valent metal centers in contradistinction to other tetrapyrroles such as corroles, which typically stabilize metals in higher oxidation states.

16.
J Phys Chem Lett ; 13(30): 6956-6960, 2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35877177

RESUMO

Two electrons in two orbitals give rise to four states. When the orbitals are weakly coupled as in the case for the dxy orbitals of quadruple bond species, two of the states are diradical in character with electrons residing in separate orbitals and two of the states are zwitterionic with electrons paired in one orbital or the other. By measuring one-and two-photon spectra, the one-electron (ΔW) and two-electron (K) energies may be calculated, which are the determinants of the state energies of the four-state model for the two-electron bond. The K energy is thus especially sensitive to the size of the orbital as K is dependent on the distance between electrons. To this end, one- and two-photon spectra of Mo2X4(PMe3)4 are sensitive to secondary bonding interactions of the δ-orbital manifold with the halide orbitals, as reflected in decreasing K energies along the series Cl > Br > I. Additionally, the calculated one-electron energies have been verified with the spectroelectrochemical preparation of the Mo2X4(PMe3)4+ complexes, where the δ bond is a one-electron bond, and K is thus absent. The δ → δ* transition shifts over 10,000 cm-1 upon oxidation of Mo2X4(PMe3)4 to Mo2X4(PMe3)4+, establishing that transitions within the two-electron δ bond are heavily governed by the two-electron exchange energy.

17.
Proc Natl Acad Sci U S A ; 119(20): e2122063119, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35533271

RESUMO

SignificanceThe chemical reduction of unsaturated bonds occurs by hydrogenation with H2 as the reductant. Conversely, in biology, the unavailability of H2 engenders the typical reduction of unsaturated bonds with electrons and protons from different cofactors, requiring olefin hydrogenation to occur by proton-coupled electron transfer (PCET). Moreover, the redox noninnocence of tetrapyrrole macrocycles furnishes unusual PCET intermediates, including the phlorin, which is an intermediate in tetrapyrrole ring reductions. Whereas the phlorin of a porphyrin is well established, the phlorin of a chlorin is enigmatic. By controlling the PCET reactivity of a chlorin, including the use of a hangman functionality to manage the proton transfer, the formation of a chlorinphlorin by PCET is realized, and the mechanism for its formation is defined.

18.
ACS Omega ; 7(10): 8988-8994, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35309414

RESUMO

Zn(II), Cu(II), and Ni(II) 5,10,15,20-tetrakis(4-fluoro-2,6-dimethylphenyl)porphyrins (TFPs) have been synthesized and characterized. The electronic spectroscopy and cyclic voltammetry of these compounds, along with the free-base macrocycle (2H-TFP), have been determined; 2H-TFP was also structurally characterized by X-ray crystallography. The Cu(II)TFP exhibits catalytic activity for the hydrogen evolution reaction (HER). The analysis of linear sweep voltammograms shows that the HER reaction of Cu(II)TFP with benzoic acid is first-order in proton concentration with an average apparent rate constant for HER catalysis of k app = 5.79 ± 0.47 × 103 M-1 s-1.

19.
Nat Commun ; 13(1): 1243, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35273163

RESUMO

Electrochemical and photoelectrochemical water splitting offers a scalable approach to producing hydrogen from renewable sources for sustainable energy storage. Depending on the applications, oxygen evolution catalysts (OECs) may perform water splitting under a variety of conditions. However, low stability and/or activity present challenges to the design of OECs, prompting the design of self-healing OECs composed of earth-abundant first-row transition metal oxides. The concept of self-healing catalysis offers a new tool to be employed in the design of stable and functionally active OECs under operating conditions ranging from acidic to basic solutions and from a variety of water sources.

20.
J Am Chem Soc ; 144(3): 1069-1081, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35023740

RESUMO

Proton-coupled electron transfer (PCET) underpins energy conversion in chemistry and biology. Four energy systems are described whose discoveries are based on PCET: the water splitting chemistry of the Artificial Leaf, the carbon fixation chemistry of the Bionic Leaf-C, the nitrogen fixation chemistry of the Bionic Leaf-N and the Coordination Chemistry Flow Battery (CCFB). Whereas the Artificial Leaf, Bionic Leaf-C, and Bionic Leaf-N require strong coupling between electron and proton to reduce energetic barriers to enable high energy efficiencies, the CCFB requires complete decoupling of the electron and proton so as to avoid parasitic energy-wasting reactions. The proper design of PCET in these systems facilitates their implementation in the areas of (i) centralized large scale grid storage of electricity and (ii) decentralized energy storage/conversion using only sunlight, air and any water source to produce fuel and food within a sustainable cycle for the biogenic elements of C, N and P.


Assuntos
Elétrons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA