Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Bull (Beijing) ; 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38644131

RESUMO

We report the charge-changing cross sections (σcc) of 24 p-shell nuclides on both hydrogen and carbon at about 900A MeV, of which 8,9Li, 10-12Be, 10,14,15B, 14,15,17-22N and 16O on hydrogen and 8,9Li on carbon are for the first time. Benefiting from the data set, we found a new and robust relationship between the scaling factor of the Glauber model calculations and the separation energies of the nuclei of interest on both targets. This allows us to deduce proton radii (Rp) for the first time from the cross sections on hydrogen. Nearly identical Rp values are deduced from both target data for the neutron-rich carbon isotopes; however, the Rp from the hydrogen target is systematically smaller in the neutron-rich nitrogen isotopes. This calls for further experimental and theoretical investigations.

2.
Nucl Instrum Methods Phys Res A ; 1043: 167464, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36345417

RESUMO

Owing to the favorable depth-dose distribution and the radiobiological properties of heavy ion radiation, ion beam therapy shows an improved success/toxicity ratio compared to conventional radiotherapy. The sharp dose gradients and very high doses in the Bragg peak region, which represent the larger physical advantage of ion beam therapy, make it also extremely sensitive to range uncertainties. The use of ß +-radioactive ion beams would be ideal for simultaneous treatment and accurate online range monitoring through PET imaging. Since all the unfragmented primary ions are potentially contributing to the PET signal, these beams offer an improved image quality while preserving the physical and radiobiological advantages of the stable counterparts. The challenging production of radioactive ion beams and the difficulties in reaching high intensities, have discouraged their clinical application. In this context, the project Biomedical Applications of Radioactive ion Beams (BARB) started at GSI (Helmholtzzentrum für Schwerionenforschung GmbH) with the main goal to assess the technical feasibility and investigate possible advantages of radioactive ion beams on the pre-clinical level. During the first experimental campaign 11C and 10C beams were produced and isotopically separated with the FRagment Separator (FRS) at GSI. The ß +-radioactive ion beams were produced with a beam purity of 99% for all the beam investigated (except one case where it was 94%) and intensities potentially sufficient to treat a small animal tumors within few minutes of irradiation time, ∼ 106 particle per spill for the 10C and ∼ 107 particle per spill for the 11C beam, respectively. The impact of different ion optical parameters on the depth dose distribution was studied with a precision water column system. In this work, the measured depth dose distributions are presented together with results from Monte Carlo simulations using the FLUKA software.

3.
Front Oncol ; 11: 737050, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34504803

RESUMO

Several techniques are under development for image-guidance in particle therapy. Positron (ß+) emission tomography (PET) is in use since many years, because accelerated ions generate positron-emitting isotopes by nuclear fragmentation in the human body. In heavy ion therapy, a major part of the PET signals is produced by ß+-emitters generated via projectile fragmentation. A much higher intensity for the PET signal can be obtained using ß+-radioactive beams directly for treatment. This idea has always been hampered by the low intensity of the secondary beams, produced by fragmentation of the primary, stable beams. With the intensity upgrade of the SIS-18 synchrotron and the isotopic separation with the fragment separator FRS in the FAIR-phase-0 in Darmstadt, it is now possible to reach radioactive ion beams with sufficient intensity to treat a tumor in small animals. This was the motivation of the BARB (Biomedical Applications of Radioactive ion Beams) experiment that is ongoing at GSI in Darmstadt. This paper will present the plans and instruments developed by the BARB collaboration for testing the use of radioactive beams in cancer therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA