RESUMO
In this study, copper oxide nanoparticles (CuO-NPs) were synthesised in an ionic liquid, [C2MIm][CnHnCO2], and the respective copper(II) carboxylate precursors. Heating the solution to 120 °C caused a colour change from blue to red, indicating a change in copper salt coordination and nanoparticle formation. Crystallography and UV-Vis spectroscopy were used to monitor the transition upon temperature changes. The particle formation was characterised using TEM and SWAXS analyses. The results showed that different anion chain lengths led to different particle sizes. When using copper(II) acetate precursors, the transformation resulted in CuO(I,II) clusters (<1 nm), depending on the imidazolium-based cation used. However, using a copper(II) octanoate precursor, small CuO-NPs in the range of 10-25 nm were formed, while larger CuO-NPs were obtained using a copper(II) butanoate precursor in the range of 10-61 nm.
RESUMO
Soft-templating synthesis provides an effective route to prepare ordered mesoporous carbons (MCs) that can be used for supercapacitors. During this process, the cross-linking of carbon precursors is critical to obtain tailored pore structural MCs, thus careful selection of appropriate cross-linking agents is required. Despite the shift from the prevailing cross-linker formaldehyde to its more environmentally friendly alternatives, detailed understanding on the influence of different cross-linking agents on templating synthesis is still lacking. Therefore, it remains challenging to draw a conclusion regarding which cross-linker can effectively enable an ideal cross-linking and a robust templating synthesis of ordered MCs. This work presents a systematic study, by comparing three typical cross-linkers (formaldehyde, glyoxal, and glyoxylic acid), on the pore architecture, surface functionality, and electrochemical performance of resulting MCs. Both the type of cross-linker and its ratio with precursor monomer were found to be crucial for the pore architecture and electrochemical performance of resulting MCs. Glyoxal showed to be a promising cross-linker for easily generating ordered mesopores between 3.3-6.1 nm when the molar ratio between cross-linker and carbon precursor ranged from 1 to 2, whereas glyoxylic acid and formaldehyde induced interrupted or disordered mesopores. When the resulting MCs were used as supercapacitor electrodes, those cross-linked with glyoxal also led to overall higher capacitance in both 6 M KOH aqueous and ionic liquid [N2220][NTf2]/acetonitrile electrolytes thanks to the dominance of ordered mesopore channels, especially MC prepared at glyoxal/precursor molar ratio of 1.5. These findings on the effect of cross-linking on templating synthesis can be used to guide the customisation of MCs for supercapacitors and other applications by smartly choosing a suitable cross-linking agent and its ratio with the precursor.
RESUMO
Herein, we report on the preparation of liquid dimeric lanthanide(III)-containing compounds. Starting from the design of dimeric solids, we demonstrate that by tuning of anion and cation structures we can lower the melting points below room temperature, whilst maintaining the dimeric structure. Magnetic measurements could establish the spin-spin interactions of the neighboring lanthanide(III) ions in the liquid state at low temperatures, and matched the interactions of the analogous crystalline solid compounds.
RESUMO
Soft-templating synthesis has been widely employed to fabricate ordered mesoporous polymer and carbon materials with effectively tuneable pore sizes. However, the commonly used templating agents, block copolymers, are normally decomposed during the process, thus are barely recyclable; this increases the costs and hampers the scale-up feasibility. Therefore, it becomes imperative to seek promising alternatives; amphiphilic ionic liquids (ILs) are excellent candidates due to their good recyclability. This study explored the templating behaviour of IL templates for preparing mesoporous polymers and carbons. In details, the self-assembly of ternary systems (comprising of IL templates, precursors and solvent) were investigated by a combination of coarse-grained molecular dynamics (CGMD) simulations, density function theory (DFT) calculations and experimental techniques. The results indicate that the morphologies of IL templates are tuneable not only by the adjustment of water content in the mixture but also by the selection of suitable precursors. Material precursors containing increasing numbers of hydroxyl moieties also induce various precursor-template spatial correlations, resulting in different topological structures of nanomaterials. This work presents a fundamental investigation into the mechanisms of templating synthesis with amphiphilic ILs as recyclable templates and gives insight into the effective design of coveted carbon nanomaterials for targeted applications.
RESUMO
Electron/proton transfers in water proceeding from ground/excited states are the elementary reactions of chemistry. These reactions of an iconic class of moleculesâpolypyridineRu(II)âare now controlled by capturing or releasing three of them with hosts that are shape-switchable. Reversible erection or collapse of the host walls allows such switchability. Some reaction rates are suppressed by factors of up to 120 by inclusive binding of the metal complexes. This puts nanometric coordination chemistry in a box that can be open or shut as necessary. Such second-sphere complexation can allow considerable control to be exerted on photocatalysis, electrocatalysis, and luminescent sensing involving polypyridineRu(II) compounds. The capturing states of hosts are symmetry-matched to guests for selective binding and display submicromolar affinities. A perching complex, which is an intermediate state between capturing and releasing states, is also demonstrated.
Assuntos
Complexos de Coordenação , Compostos Heterocíclicos , Rutênio , 2,2'-Dipiridil/química , Complexos de Coordenação/química , Rutênio/química , ÁguaRESUMO
Diethylammonium nitrate, [N0 0 2 2][NO3], and its perdeuterated analogue, [N D D 2 2] [NO3], were structurally characterized and studied by infrared, Raman, and inelastic neutron scattering (INS) spectroscopy. Using these experimental data along with state-of-the-art computational materials modeling, we report unambiguous spectroscopic signatures of hydrogen-bonding interactions between the two counterions. An exhaustive assignment of the spectral features observed with each technique has been provided, and a number of distinct modes related to NH···O dynamics have been identified. We put a particular emphasis on a detailed interpretation of the high-resolution, broadband INS experiments. In particular, the INS data highlight the importance of conformational degrees of freedom within the alkyl chains, a ubiquitous feature of ionic liquid (IL) systems. These findings also enable an in-depth physicochemical understanding of protonic IL systems, a first and necessary step to the tailoring of hydrogen-bonding networks in this important class of materials.
RESUMO
Microbial fouling is a costly issue, which impacts a wide range of industries, such as healthcare, food processing, and construction industries, and improved strategies to reduce the impact of fouling are urgently required. Slippery liquid-infused porous surfaces (SLIPSs) have recently been developed as a bioinspired approach to prevent antifouling. Here, we report the development of slippery, superhydrophilic surfaces by infusing roughened poly(vinyl chloride) (PVC) substrates with phosphonium ionic liquids (PILs). These surfaces were capable of reducing viable bacterial adherence by Staphylococcus aureus and Pseudomonas aeruginosa by >6 log10 cfu mL-1 after 24 h under static conditions relative to control PVC. Furthermore, we report the potential of a series of asymmetric quaternary alkyl PILs with varying alkyl chain lengths (C4-C18) and counteranions to act as antimicrobial agents against both Gram +ve and Gram -ve bacteria and illustrate their potential as antimicrobial alternatives to traditional fluorinated lubricants commonly used in the synthesis of SLIPSs.
RESUMO
This manuscript presents a comparative study of the physico-chemical behaviour of sulfobetaine-type single and double zwitterions and zwitterionic salts, and structurally similar mono- and di-cationic tetraalkylammonium salts in aqueous solutions. The study includes experimental determination of the density and viscosity of highly diluted aqueous solutions with derivation of the Jones-Dole viscosity B-coefficient, partial molal volumes at infinite dilution, and hydration numbers. The study also examines the effects of addition of the salts on the surface tension of cationic and anionic surfactants, upper critical solution temperature of a non-ionic surfactant, solubility of amino acids, and stability of a protein. The experimental investigation was performed taking a broad bottom-up approach with the aim to elucidate the effect of molecular architecture and charge (two versus four) on the degree of surface hydration of a molecule, kosmotropicity, and interactions with charged and hydrophilic/hydrophobic surfaces - all-important characteristics which define ability of a functional group to resist protein attachment. The novel multicharged zwitterionic materials have exhibited superior qualities, thus paving the way to development of a new platform in design of hydrophilic and anti-fouling surfaces by employing the four-charge bearing molecular motifs.
RESUMO
Molecular-logic based computation (MLBC) has grown by accumulating many examples of combinational logic gates and a few sequential variants. In spite of many inspirations being available in biology, there are virtually no examples of MLBC in chemistry where sequential and combinational operations are integrated. Here we report a simple alcohol-ketone redox interconversion which switches a macrocycle between a large or small cavity, with erect aromatic walls which create a deep hydrophobic space or with collapsed walls respectively. Small aromatic guests can be captured or released in an all or none manner upon chemical command. During capture, the fluorescence of the alcohol macrocycle is quenched via fluorescent photoinduced electron transfer switching, meaning that its occupancy state is self-indicated. This represents a chemically-driven RS Flip-Flop, one of whose outputs is fed into an INHIBIT gate. Processing of outputs from memory stores is seen in the injection of packaged neurotransmitters into synaptic clefts for onward neural signalling. Overall, capture-release phenomena from discrete supermolecules now have a Boolean basis.
Assuntos
Computadores Moleculares , Modelos Moleculares , Álcoois/química , Cristalografia por Raios X , Fluorescência , Cetonas/química , Lógica , Espectroscopia de Ressonância Magnética , OxirreduçãoRESUMO
In the last decade, deep eutectic solvents (DES) have risen as promising and cheap alternatives for the often expensive and moisture-sensitive ionic liquids. For the application in metal processing industries such as hard chrome plating, still very little is known of the behavior of metal ions in these types of liquids. Therefore, we use the model-free Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) method to study Cr(iii) as sustainable alternative to the hazardous Cr(vi) and obtain reference UV/Vis spectra of chromium(iii)chlorides in several aqueous solutions and in water-DES mixtures. In addition, the results have been confirmed by EXAFS measurements. We observe that in the DES ethaline, ethylene glycol ligands are coordinating with the chromium(iii) metal ions and hence, different UV/Vis reference spectra are obtained, compared to those in aqueous solutions. Additionally, concentration profiles provide a tool for tuning the coordination chemistry, based on the choice of the appropriate DES mixture or aqueous solutions. Consequently, valuable UV/Vis reference spectra for some known and unknown chromium chloride complexes in several aqueous solutions and DES-water mixtures were obtained, which showed that the coordination chemistry in these liquids can be considerably different and comparison should be done with great care.
RESUMO
The first example of triflometallate ionic liquids, named in analogy to chlorometallate ionic liquids, is reported. Trifloaluminate ionic liquids, synthesized from 1-alkyl-3-methylimidazolium triflates and aluminum triflate, were characterized by multinuclear NMR spectroscopy and FT-IR spectroscopy, revealing the existence of oligonuclear, multiply-charged trifloaluminate anions, with multiple bridging triflate modes. Acceptor numbers were determined to quantify their Lewis acidity, rendering trifloaluminate ionic liquids as medium-strength Lewis acids (AN = ca. 65). Used as acidic catalysts in the cycloaddition of 2,4-dimethylphenol and isoprene (molar ratio 2:1) to prepare chromane, trifloaluminate systems outperformed literature systems, showing high activity (conversions 94-99%, selectivities 80-89%) and at low loadings (0.2 mol%) at 35°C. Using these new systems as supported ionic liquid phase (SILP) on multi-walled carbon nanotubes (ionic liquid loading 16 wt%) delivered a recyclable catalytic system, with activity enhanced with respect to the homogenous regime.
RESUMO
PX3 compounds (X=Cl, Br, I) in imidazolium halide ionic liquids combine with the anion Z (Z=Cl, Br, I) of the solvent to form [PX3 Z]- complex anions. These anions have a sawhorse shape in which the lone pair of the phosphorus atom fills the third equatorial position of the pseudotrigonal bipyramid. Theoretical results show that this association remains incomplete due to strong hydrogen bonding with the cations of the ionic liquid, which competes with the phosphorus trihalide for interaction with the Z- anion. Temperature-dependent 31 Pâ NMR experiments indicated that the P-Z binding is weaker at higher temperature. Both theory and experiment evidence dynamic exchange of the halide anions at the phosphorus atom, together with continuous switching of the ligands at the phosphorus atom between equatorial and axial positions. Detailed knowledge of the mechanism of the spontaneous exchange of halogen atoms at phosphorus trihalides suggests a way to design novel, highly conducting ionic-liquid mixtures.
RESUMO
A novel green preparation route to prepare nano-mesoporous γ-Al2O3 from AlCl3.6H2O derived from aluminum foil waste and designated as ACFL550 is demonstrated, which showed higher surface area, larger pore volume, stronger acidity and higher surface area compared to γ-Al2O3 that is produced from the commercial AlCl3 precursor, AC550. The produced crystalline AlCl3.6H2O and Al(NO3)3.9H2O in the first stage of the preparation method were characterized by single-crystal XRD, giving two crystal structures, a trigonal (R-3c) and monoclinic (P21/c) structure, respectively. EDX analysis showed that ACFL550 had half the chlorine content (Cl%) relative to AC550, which makes ACFL550 a promising catalyst in acid-catalysed reactions. Pure and modified ACFL550 and AC550 were applied in acid-catalysed reactions, the dehydration of methanol to dimethyl ether and the total methane oxidation reactions, respectively. It was found that ACFL550 showed higher catalytic activity than AC550. This work opens doors for the preparation of highly active and well-structured nano-mesoporous alumina catalysts/supports from aluminum foil waste and demonstrates its application in acid-catalysed reactions.
RESUMO
A range of liquid rare earth chlorometallate complexes with the alkyl-phosphonium cation, [P666â¯14](+), has been synthesized and characterized. EXAFS confirmed the predominant liquid-state speciation of the [LnCl6](3-) ion in the series with Ln = Nd, Eu, Dy. The crystal structure of the shorter-alkyl-chain cation analogue [P4444](+) has been determined and exhibits a very large unit cell. The luminescence properties, with visible-light emissions of the liquid Tb, Eu, Pr, and Sm and the NIR emissions for the Nd and Er compounds, were determined. The effective magnetic moments were measured and fitted for the Nd, Tb, Ho, Dy, Gd, and Er samples.
RESUMO
A unified total synthesis of the GRP78-downregulator (+)-prunustatin A and the immunosuppressant (+)-SW-163A based upon [1 + 1 + 1 + 1]-fragment condensation and macrolactonization between O(4) and C(5) is herein described. Sharpless asymmetric dihydroxylation was used to set the C(2) stereocenter present in both targets. In like fashion, coupling of the (+)-prunustatin A macrolide amine with benzoic acid furnished a JBIR-04 diastereoisomer whose NMR spectra did not match those of JBIR-04, thus confirming that it has different stereochemistry than (+)-prunustatin A.
Assuntos
Proteínas de Choque Térmico/metabolismo , Imunossupressores/síntese química , Macrolídeos/síntese química , Peptídeos Cíclicos/síntese química , Catálise , Ciclização , Chaperona BiP do Retículo Endoplasmático , EstereoisomerismoRESUMO
Temperature-dependent switching of paramagnetism of a cobalt(II) complex is observed in an ionic liquid solution. Paramagnetic and thermochromic switching occur simultaneously due to a reversible change in coordination. This reversible switching is possible in the ionic liquid solution, which enables mobility of thiocyanate anions by remaining mobile at low temperatures and acts as an anion reservoir.
RESUMO
Ternary compounds of copper indium selenide nano- and microsized materials were prepared through colloidal synthesis using an indium(III) selenide precursor and copper(I) chloride via a microwave-assisted ionothermal route. The indium(III) selenide precursor used in the reaction was formed in situ from a diphenyl diselenide precursor and chloroindate(III) ionic liquids (ILs), also via a microwave-assisted ionothermal route. The crystal structures of three intermediates, namely, CuCl2(OMe)2(H2O)){Cu(PhSeO2)2}n, [CuCl(Se2Ph2)2]n, and [C8mim]3{Cu(I)Cl2Cu(II)OCl8}n, were determined after formation through a ionothermal procedure utilizing metal-containing imidazolium ILs and a selenium precursor with conventional heating. Herein, we compare the use of microwave irradiation over conventional heating with different ILs on the stoichiometry of the resulting products. The influence of the reaction temperature, reaction time, order of addition of reagents, and variation of ILs, which were characterized using PXRD, SEM, and EDX, on the final products was investigated.
RESUMO
A wide range of room temperature ionic liquids based on the 3-methylpiperdinium cation core were produced from 3-methylpiperidine, which is a derivative of DYTEK® A amine. First, reaction with 1-bromoalkanes or 1-bromoalkoxyalkanes generated the corresponding tertiary amines (Rmßpip, R = alkyl or alkoxyalkyl); further quaternisation reactions with the appropriate methylating agents yielded the quaternary [Rmmßpip]X salts (X(-) = I(-), [CF3CO2](-) or [OTf](-); Tf = -SO2CF3), and [Rmmßpip][NTf2] were prepared by anion metathesis from the corresponding iodides. All [NTf2](-) salts are liquids at room temperature. [Rmmßpip]X (X(-) = I(-), [CF3CO2](-) or [OTf](-)) are low-melting solids when R = alkyl, but room temperature liquids upon introduction of ether functionalities on R. Neither of the 3-methylpiperdinium ionic liquids showed any signs of crystallisation, even well below 0 °C. Some related non-C-substituted piperidinium and pyrrolidinium analogues were prepared and studied for comparison. Crystal structures of 1-hexyl-1,3-dimethylpiperidinium tetraphenylborate, 1-butyl-3-methylpiperidinium bromide, 1-(2-methoxyethyl)-1-methylpiperidinium chloride and 1-(2-methoxyethyl)-1-methylpyrrolidinium bromide are reported. Extensive structural and physical data are collected and compared to literature data, with special emphasis on the systematic study of the cation ring size and/or asymmetry effects on density, viscosity and ionic conductivity, allowing general trends to be outlined. Cyclic voltammetry shows that 3-methylpiperidinium ionic liquids, similarly to azepanium, piperidinium or pyrrolidinium counterparts, are extremely electrochemically stable; the portfolio of useful alternatives for safe and high-performing electrolytes is thus greatly extended.
RESUMO
Efficient scrubbing of mercury vapour from natural gas streams has been demonstrated both in the laboratory and on an industrial scale, using chlorocuprate(II) ionic liquids impregnated on high surface area porous solid supports, resulting in the effective removal of mercury vapour from natural gas streams. This material has been commercialised for use within the petroleum gas production industry, and has currently been running continuously for three years on a natural gas plant in Malaysia. Here we report on the chemistry underlying this process, and demonstrate the transfer of this technology from gram to ton scale.
RESUMO
Stable liquid and solid salts in the form of elusive hemiacetals, appended with fragrant alcohols, have been synthesised as pro-fragrances, and the controlled release of these fragrances, triggered by water, is demonstrated.