Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 59(85): 12755-12758, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37811602

RESUMO

A self-supported NiTeO3 perovskite is made by deploying an extended hydrothermal tellurization strategy with a restricted Te content, which was found to be exceptionally active towards the oxidation of water and methanol and the reduction of water in 1.0 M KOH where it delivered -10 mA cm-2 at just -1.54 V for a full cell featuring MOR‖HER.

2.
J Colloid Interface Sci ; 634: 169-175, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36535156

RESUMO

Determining the number of electrocatalytically accessible sites (ECAS) and real surface area (RSA) for any given electrocatalyst precisely is important in energy conversion electrocatalysis as these are directly used in the determination of intrinsic activity markers. For monometallic electrocatalysts and electrocatalysts of just one type of active site, there believed to be ways of making precise determination of ECAS and RSA using underpotential deposition (UPD), stripping, and redox-charge integration employing transient voltammetric sweeping techniques. This transient nature of sweeping techniques makes the determination of ECAS and RSA relatively less reliable. This study is directed at examining the effects of scan rate in the determination of ECAS and RSA taking Ni(OH)2/CC and Pt wire as model catalytic electrodes. The results suggest that the scan rate and the determined ECAS and RSA values are inversely related and the lowest possible scan rate set experiment was witnessed to give the highest possible ECAS or RSA values with LSV/CV.


Assuntos
Domínio Catalítico , Catálise , Eletrodos
3.
Angew Chem Int Ed Engl ; 60(43): 23051-23067, 2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34523770

RESUMO

For decades, turnover frequency (TOF) has served as an accurate descriptor of the intrinsic activity of a catalyst, including those in electrocatalytic reactions involving both fuel generation and fuel consumption. Unfortunately, in most of the recent reports in this area, TOF is often not properly reported or not reported at all, in contrast to the overpotentials at a benchmarking current density. The current density is significant in determining the apparent activity, but it is affected by catalyst-centric parasitic reactions, electrolyte-centric competing reactions, and capacitance. Luckily, a properly calculated TOF can precisely give the intrinsic activity free from these phenomena in electrocatalysis. In this Viewpoint we ask: 1) What makes the commonly used activity markers unsuitable for intrinsic activity determination? 2) How can TOF reflect the intrinsic activity? 3) Why is TOF still underused in electrocatalysis? 4) What methods are used in TOF determination? and 5) What is essential in the more accurate calculation of TOF? Finally, the significance of normalizing TOF by Faradaic efficiency (FE) is stressed and we give our views on the development of universal analytical tools to determine the exact number of active sites and real surface area for all kinds of materials.

4.
Angew Chem Int Ed Engl ; 60(35): 18981-19006, 2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-33411383

RESUMO

Transition metal hydroxides (M-OH) and their heterostructures (X|M-OH, where X can be a metal, metal oxide, metal chalcogenide, metal phosphide, etc.) have recently emerged as highly active electrocatalysts for hydrogen evolution reaction (HER) of alkaline water electrolysis. Lattice hydroxide anions in metal hydroxides are primarily responsible for observing such an enhanced HER activity in alkali that facilitate water dissociation and assist the first step, the hydrogen adsorption. Unfortunately, their poor electronic conductivity had been an issue of concern that significantly lowered its activity. Interesting advancements were made when heterostructured hydroxide materials with a metallic and or a semiconducting phase were found to overcome this pitfall. However, in the midst of recently evolving metal chalcogenide and phosphide based HER catalysts, significant developments made in the field of metal hydroxides and their heterostructures catalysed alkaline HER and their superiority have unfortunately been given negligible attention. This review, unlike others, begins with the question of why alkaline HER is difficult and will take the reader through evaluation perspectives, trends in metals hydroxides and their heterostructures catalysed HER, an understanding of how alkaline HER works on different interfaces, what must be the research directions of this field in near future, and eventually summarizes why metal hydroxides and their heterostructures are inevitable for energy-efficient alkaline HER.

5.
Adv Colloid Interface Sci ; 287: 102331, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33321333

RESUMO

Electrochemical hydrogen peroxide synthesis using two-electron oxygen electrochemistry is an intriguing alternative to currently dominating environmentally unfriendly and potentially hazardous anthraquinone process and noble metals catalysed direct synthesis. Electrocatalytic two-electron oxygen reduction reaction (ORR) and water oxidation reaction (WOR) are the source of electrochemical hydrogen peroxide generation. Various electrocatalysts have been used for the same and were characterized using several electroanalytical, chemical, spectroscopic and chromatographic tools. Though there have been a few reviews summarizing the recent developments in this field, none of them have unified the approaches in catalysts' design, criticized the ambiguities and flaws in the methods of evaluation, and emphasized the role of electrolyte engineering. Hence, we dedicated this review to discuss the recent trends in the catalysts' design, performance optimization, evaluation perspectives and their appropriateness and opportunities with electrolyte engineering. In addition, particularized discussions on fundamental oxygen electrochemistry, additional methods for precise screening, and the role of solution chemistry of synthesized hydrogen peroxide are also presented. Thus, this review discloses the state-of-the-art in an unpresented view highlighting the challenges, opportunities, and alternative perspectives.

6.
ACS Nano ; 14(5): 5659-5667, 2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-32379413

RESUMO

Soft energy storage devices, such as supercapacitors, are an essential component for powering integrated soft microsystems. However, conventional supercapacitors are mainly manufactured using hard/brittle materials that easily crack and eventually delaminate from the current collector by mechanical deformation. Therefore, to realize all-soft supercapacitors, the electrodes should be soft, stretchable, and highly conductive without compromising the electrochemical performance. This paper presents all-soft supercapacitors for integrated soft microsystems based on gallium-indium liquid metal (eutectic gallium-indium alloy, EGaIn) electrodes with integrated functionalized carbon nanotubes (CNTs). Oxygen functional groups on the surface of the CNTs ensure strong adhesion between the functionalized CNTs and the thin native oxide layer on the surface of EGaIn, which enables delamination-free soft and stretchable electrodes even under mechanical deformation. The electrochemical performances of fabricated all-soft supercapacitors in a parallel-plate arrangement were investigated without and with applied mechanical deformation. The fabricated supercapacitors exhibit areal capacitances as high as 12.4 mF cm-2 and show nearly unchanged performance under 30% applied strain. They maintain >95% of their original capacitance after >4200 charging and discharging cycles with a periodic applied strain of 30%. Finally, fabricated supercapacitors have been successfully integrated with a commercial light-emitting diode to demonstrate an integrated soft microsystem.

7.
ACS Appl Mater Interfaces ; 12(24): 27327-27338, 2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32459085

RESUMO

A swift potentiostatic anodization method for growing a 5-7 µm tall nanoneedle array of Cu(OH)2-CuO on Cu foil within 100 s has been developed. This catalytic electrode when screened for methanol oxidation electrocatalysis in 1 M KOH with 0.5 M methanol, delivered a current density as high as 70 ± 10 mA cm-2 at 0.65 V versus Hg/HgO which is superior to the performance of many related catalysts reported earlier. The observed activity enhancement is attributed to the formation of both Cu(OH)2-CuO nanoneedle arrays of high active surface area over the metallic Cu foil. In addition, the Cu(OH)2-CuO/Cu electrode had also exhibited excellent stability upon prolonged potentiostatic electrocatalytic oxidation of methanol while retaining the charge-transfer characteristics. Growth of such highly ordered assembly of Cu(OH)2-CuO nanoneedles within a minute has never been achieved before. When compared to its oxygen evolution reaction activity, the addition of 0.5 M methanol has lowered the overpotential at 10 mA cm-2 by 334 mV, which is significant. This encourages the use of methanol as a sacrificial anolyte for energy-saving production of H2 from water electrolysis.

8.
Small ; 16(2): e1905779, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31823508

RESUMO

In the near future, sustainable energy conversion and storage will largely depend on the electrochemical splitting of water into hydrogen and oxygen. Perceiving this, countless research works focussing on the fundamentals of electrocatalysis of water splitting and on performance improvements are being reported everyday around the globe. Electrocatalysts of high activity, selectivity, and stability are anticipated as they directly determine energy- and cost efficiency of water electrolyzers. Amorphous electrocatalysts with several advantages over crystalline counterparts are found to perform better in electrocatalytic water splitting. There are plenty of studies witnessing performance enhancements in electrocatalysis of water splitting while employing amorphous materials as catalysts. The harmony between the flexibility of amorphous electrocatalysts and electrocatalysis of water splitting (both the oxygen evolution reaction [OER] and the hydrogen evolution reaction [HER]) is one of the untold and unsummarized stories in the field of electrocatalytic water splitting. This Review is devoted to comprehensively discussing the upsurge of amorphous electrocatalysts in electrochemical water splitting. In addition to that, the basics of electrocatalysis of water splitting are also elaborately introduced and the characteristics of a good electrocatalyst for OER and HER are discussed.

9.
ACS Nano ; 13(11): 13208-13216, 2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31674760

RESUMO

Multi-millimeter-tall vertically aligned single-wall carbon nanotube (VA-SWCNT) forests were grown using Fe/Gd/Al2Ox catalyst with high initial growth rate of ∼2 µm s-1 and long catalyst lifetime of ∼70 min at 800 °C. The addition of Gd with a nominal thickness of 0.3 nm drastically prolonged the catalyst lifetime. The analysis of the VA-SWCNT forests by a transmission electron microscope showed that the average diameter of the SWCNTs grown with Gd is constant from the top to the bottom of the forests, while it monotonically increased without Gd. This indicated that Gd suppresses the structure change of the Fe nanoparticles in the lateral direction during the CNT growth. By X-ray photoelectron spectroscopy, it was found that the longer catalyst lifetime with Gd stems from the suppression of the interaction between Fe and C resulting in the smaller structure change of the Fe nanoparticles.

10.
Polymers (Basel) ; 11(10)2019 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-31614671

RESUMO

We investigated the heat transfer behavior of thermally conductive networks with one-dimensional carbon materials to design effective heat transfer pathways for hybrid filler systems of polymer matrix composites. Nano-sized few-walled carbon nanotubes (FWCNTs) and micro-sized mesophase pitch-based carbon fibers (MPCFs) were used as the thermally conductive materials. The bulk density and thermal conductivity of the FWCNT films increased proportionally with the ultrasonication time due to the enhanced dispersibility of the FWCNTs in an ethanol solvent. The ultrasonication-induced densification of the FWCNT films led to the effective formation of filler-to-filler connections, resulting in improved thermal conductivity. The thermal conductivity of the FWCNT-MPCF hybrid films was proportional to the MPCF content (maximum thermal conductivity at an MPCF content of 60 wt %), indicating the synergistic effect on the thermal conductivity enhancement. Moreover, the MPCF-to-MPCF heat transfer pathways in the FWCNT-MPCF hybrid films were the most effective in achieving high thermal conductivity due to the smaller interfacial area and shorter heat transfer pathway of the MPCFs. The FWCNTs could act as thermal bridges between neighboring MPCFs for effective heat transfer. Furthermore, the incorporation of Ag nanoparticles of approximately 300 nm into the FWCNT-MPCF hybrid film dramatically enhanced the thermal conductivity, which was closely related to a decreased thermal interfacial resistance at the intersection points between the materials. Epoxy-based composites loaded with the FWCNTs, MPCFs, FWCNT-MPCF hybrids, and FWCNT-MPCF-Ag hybrid fillers were also fabricated. A similar trend in thermal conductivity was observed in the polymer matrix composite with carbon-based hybrid films.

11.
Sci Rep ; 9(1): 12051, 2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31427642

RESUMO

Solution-based heterojunction technology is emerging for facile fabrication of silicon (Si)-based solar cells. Surface passivation of Si substrate has been well established to improve the photovoltaic (PV) performance for the conventional bulk Si cells. However, the impact is still not seen for the heterojunction cells. Here, we developed a facile and repeatable method to passivate the Si surface by a simple 1-min annealing process in vacuum, and integrated it into the heterojunction cells with poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) or carbon nanotube (CNT). A thin and dense oxide layer was introduced on the Si surface to provide a high-quality hole transport layer and passivation layer. The layer enhanced the power conversion efficiency from 9.34% to 12.87% (1.38-times enhancement) for the PEDOT:PSS/n-Si cells and from 6.61% to 8.52% (1.29-times enhancement) for the CNT/n-Si cells. The simple passivation is a promising way to enhance the PV performance of the Si cells with various solution-based heterojunctions.

12.
ACS Nano ; 12(12): 11756-11784, 2018 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-30516055

RESUMO

Advances in the synthesis and scalable manufacturing of single-walled carbon nanotubes (SWCNTs) remain critical to realizing many important commercial applications. Here we review recent breakthroughs in the synthesis of SWCNTs and highlight key ongoing research areas and challenges. A few key applications that capitalize on the properties of SWCNTs are also reviewed with respect to the recent synthesis breakthroughs and ways in which synthesis science can enable advances in these applications. While the primary focus of this review is on the science framework of SWCNT growth, we draw connections to mechanisms underlying the synthesis of other 1D and 2D materials such as boron nitride nanotubes and graphene.

13.
Analyst ; 143(15): 3635-3642, 2018 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-29956699

RESUMO

A highly sensitive interdigitated electrode (IDE) with vertically aligned dense carbon nanotube forests directly grown on conductive supports was demonstrated by combining UV lithography and a low temperature chemical vapor deposition process (470 °C). The cyclic voltammetry (CV) measurements of K4[Fe(CN)6] showed that the redox current of the IDE with CNT forests (CNTF-IDE) reached the steady state much more quickly compared to that of conventional gold IDE (Au-IDE). The performance of the CNTF-IDE largely depended on the geometry of the electrodes (e.g. width and gap). With the optimum three-dimensional electrode structure, the anodic current was amplified by a factor of ∼18 and ∼67 in the CV and the chronoamperometry measurements, respectively. The collection efficiency, defined as the ratio of the cathodic current to the anodic current at steady state, was improved up to 97.3%. The selective detection of dopamine (DA) under the coexistence of l-ascorbic acid with high concentration (100 µM) was achieved with a linear range of 100 nM-100 µM, a sensitivity of 14.3 mA mol-1 L, and a limit of detection (LOD, S/N = 3) of 42 nM. Compared to the conventional carbon electrodes, the CNTF-IDE showed superior anti-fouling property, which is of significant importance for practical applications, with a negligible shift of the half-wave potential (ΔE1/2 < 1.4 mV) for repeated CV measurements of DA at high concentration (100 µM).

14.
ACS Nano ; 12(4): 3126-3139, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29337526

RESUMO

A carbon nanotube (CNT) web electrode comprising magnetite spheres and few-walled carbon nanotubes (FWNTs) linked by the carboxylated conjugated polymer, poly[3-(potassium-4-butanoate) thiophene] (PPBT), was designed to demonstrate benefits derived from the rational consideration of electron/ion transport coupled with the surface chemistry of the electrode materials components. To maximize transport properties, the approach introduces monodispersed spherical Fe3O4 (sFe3O4) for uniform Li+ diffusion and a FWNT web electrode frame that affords characteristics of long-ranged electronic pathways and porous networks. The sFe3O4 particles were used as a model high-capacity energy active material, owing to their well-defined chemistry with surface hydroxyl (-OH) functionalities that provide for facile detection of molecular interactions. PPBT, having a π-conjugated backbone and alkyl side chains substituted with carboxylate moieties, interacted with the FWNT π-electron-rich and hydroxylated sFe3O4 surfaces, which enabled the formation of effective electrical bridges between the respective components, contributing to efficient electron transport and electrode stability. To further induce interactions between PPBT and the metal hydroxide surface, polyethylene glycol was coated onto the sFe3O4 particles, allowing for facile materials dispersion and connectivity. Additionally, the introduction of carbon particles into the web electrode minimized sFe3O4 aggregation and afforded more porous FWNT networks. As a consequence, the design of composite electrodes with rigorous consideration of specific molecular interactions induced by the surface chemistries favorably influenced electrochemical kinetics and electrode resistance, which afforded high-performance electrodes for battery applications.

15.
RSC Adv ; 8(5): 2260-2266, 2018 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-35541477

RESUMO

Although lithium-sulfur (Li-S) batteries are a promising secondary power source, it still faces many technical challenges, such as rapid capacity decay and low sulfur utilization. The loading of sulfur and the weight percentage of sulfur in the cathode usually have a significant influence on the energy density. Herein, we report an easy synthesis of a self-supporting sulfur@graphene oxide-few-wall carbon nanotube (S@GO-FWCNT) composite cathode film, wherein an aluminum foil current collector is replaced by FWCNTs and sulfur particles are uniformly wrapped by graphene oxide along with FWCNTs. The 10 wt% FWCNT matrix through ultrasonication not only provided self-supporting properties without the aid of metallic foil, but also increased the electrical conductivity. The resulting S@GO-FWCNT composite electrode showed high rate performance and cycle stability up to ∼385.7 mA h gelectrode -1 after 500 cycles and close to ∼0.04% specific capacity degradation per cycle, which was better than a S@GO composite electrode (353.1 mA h gelectrode -1). This S@GO-FWCNT composite self-supporting film is a promising cathode material for high energy density rechargeable Li-S batteries.

16.
ACS Omega ; 2(7): 3354-3362, 2017 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31457659

RESUMO

Epitaxial copper (Cu) films yield graphene with superior quality but at high cost. We report 1-3 µm thick epitaxial Cu films prepared on c plane sapphire substrates in 10-30 s, which is much faster than that of the typical sputtering method. Such rapid deposition is realized by vapor deposition using a Cu source heated to 1700-1800 °C, which is much higher than its melting point of 1085 °C. Continuous graphene films, either bilayer or single-layer, are obtained on the epitaxial Cu by chemical vapor deposition and transferred to carrier substrates. The sapphire substrates can be reused five to six times maintaining the quality of the epitaxial Cu films and graphene. The mechanisms and requirements are discussed for such quick epitaxy of Cu on reused sapphire, which will enable high-quality graphene production at lower cost.

17.
Nanoscale ; 8(24): 12330-8, 2016 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-27273722

RESUMO

Crumpled graphene is known to have a strong aggregation-resistive property due to its unique 3D morphology, providing a promising solution to prevent the restacking issue of graphene based electrode materials. Here, we demonstrate the utilization of redox-active oxygen functional groups on the partially reduced crumpled graphene oxide (r-CGO) for electrochemical energy storage applications. To effectively utilize the surface redox reactions of the functional groups, hierarchical networks of electrodes including r-CGO and functionalized few-walled carbon nanotubes (f-FWNTs) are assembled via a vacuum-filtration process, resulting in a 3D porous structure. These composite electrodes are employed as positive electrodes in Li-cells, delivering high gravimetric capacities of up to ∼170 mA h g(-1) with significantly enhanced rate-capability compared to the electrodes consisting of conventional 2D reduced graphene oxide and f-FWNTs. These results highlight the importance of microstructure design coupled with oxygen chemistry control, to maximize the surface redox reactions on functionalized graphene based electrodes.

18.
Nanoscale ; 8(6): 3671-7, 2016 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-26809548

RESUMO

Biomass derived carbon materials have been widely used as electrode materials; however, in most cases, only electrical double layer capacitance (EDLC) is utilized and therefore, only low energy density can be achieved. Herein, we report on redox-active carbon spheres that can be simply synthesized from earth-abundant glucose via a hydrothermal process. These carbon spheres exhibit a specific capacity of ∼210 mA h gCS(-1), with high redox potentials in the voltage range of 2.2-3.7 V vs. Li, when used as positive electrode in lithium cells. Free-standing, flexible composite films consisting of the carbon spheres and few-walled carbon nanotubes deliver high specific capacities up to ∼155 mA h gelectrode(-1) with no obvious capacity fading up to 10,000 cycles, proposing to be promising positive electrodes for lithium-ion batteries or capacitors. Furthermore, considering that the carbon spheres were obtained in an aqueous glucose solution and no toxic or hazardous reagents were used, this process opens up a green and sustainable method for designing high performance, environmentally-friendly energy storage devices.

19.
Nat Commun ; 6: 7040, 2015 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-25943905

RESUMO

Electrochemical energy-storage devices have the potential to be clean and efficient, but their current cost and performance limit their use in numerous transportation and stationary applications. Many organic molecules are abundant, economical and electrochemically active; if selected correctly and rationally designed, these organic molecules offer a promising route to expand the applications of these energy-storage devices. In this study, polycyclic aromatic hydrocarbons are introduced within a functionalized few-walled carbon nanotube matrix to develop high-energy, high-power positive electrodes for pseudocapacitor applications. The reduction potential and capacity of various polycyclic aromatic hydrocarbons are correlated with their interaction with the functionalized few-walled carbon nanotube matrix, chemical configuration and electronic structure. These findings provide rational design criteria for nanostructured organic electrodes. When combined with lithium negative electrodes, these nanostructured organic electrodes exhibit energy densities of ∼350 Wh kg(-1)electrode at power densities of ∼10 kW kg(-1)electrode for over 10,000 cycles.

20.
ACS Nano ; 8(4): 3285-93, 2014 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-24689647

RESUMO

We propose a technique for one-step micropatterning of as-grown carbon-nanotube films on a plastic substrate with sub-10 µm resolution on the basis of the dry transfer process. By utilizing this technique, we demonstrated the novel high-performance flexible carbon-nanotube transparent conductive film with a microgrid structure, which enabled improvement of the performance over the trade-off between the sheet resistance and transmittance of a conventional uniform carbon-nanotube film. The sheet resistance was reduced by 46% at its maximum by adding the microgrid, leading to a value of 53 Ω/sq at a transmittance of 80%. We also demonstrated easy fabrication of multitouch projected capacitive sensors with 12 × 12 electrodes. The technique is quite promising for energy-saving production of transparent conductor devices with 100% material utilization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA