Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 15: 1350391, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38628638

RESUMO

Pseudomonas aeruginosa biofilm is a community of bacteria that adhere to live or non-living surfaces and are encapsulated by an extracellular polymeric substance. Unlike individual planktonic cells, biofilms possess a notable inherent resistance to sanitizers and antibiotics. Overcoming this resistance is a substantial barrier in the medical and food industries. Hence, while antibiotics are ineffective in eradicating P. aeruginosa biofilm, scientists have explored alternate strategies, including the utilization of natural compounds as a novel treatment option. To this end, curcumin, carvacrol, thymol, eugenol, cinnamaldehyde, coumarin, catechin, terpinene-4-ol, linalool, pinene, linoleic acid, saponin, and geraniol are the major natural compounds extensively utilized for the management of the P. aeruginosa biofilm community. Noteworthy, the exact interaction of natural compounds and the biofilm of this bacterium is not elucidated yet; however, the interference with the quorum sensing system and the inhibition of autoinducer production in P. aeruginosa are the main possible mechanisms. Noteworthy, the use of different drug platforms can overcome some drawbacks of natural compounds, such as insolubility in water, limited oral bioavailability, fast metabolism, and degradation. Additionally, drug platforms can deliver different antibiofilm agents simultaneously, which enhances the antibiofilm potential of natural compounds. This article explores many facets of utilizing natural compounds to inhibit and eradicate P. aeruginosa biofilms. It also examines the techniques and protocols employed to enhance the effectiveness of these compounds.

2.
Cell Commun Signal ; 21(1): 306, 2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37904180

RESUMO

Chronic rhinosinusitis (CRS) is a pathological condition characterized by persistent inflammation in the upper respiratory tract and paranasal sinuses. The epithelium serves as the first line of defense against potential threats and protects the nasal mucosa. The fundamental mechanical barrier is formed by the cell-cell contact and mucociliary clearance (MCC) systems. The physical-mechanical barrier is comprised of many cellular structures, including adhesion junctions and tight junctions (TJs). To this end, different factors, such as the dysfunction of MCC, destruction of epithelial barriers, and tissue remodeling, are related to the onset and development of CRS. Recently published studies reported the critical role of different microorganisms, such as Staphylococcus aureus and Pseudomonas aeruginosa, in the induction of the mentioned factors. Bacteria could result in diminished ciliary stimulation capacity, and enhance the chance of CRS by reducing basal ciliary beat frequency. Additionally, bacterial exoproteins have been demonstrated to disrupt the epithelial barrier and induce downregulation of transmembrane proteins such as occludin, claudin, and tricellulin. Moreover, bacteria exert an influence on TJ proteins, leading to an increase in the permeability of polarized epithelial cells. Noteworthy, it is evident that the activation of TLR2 by staphylococcal enterotoxin can potentially undermine the structural integrity of TJs and the epithelial barrier through the induction of pro-inflammatory cytokines. The purpose of this article is an attempt to investigate the possible role of the most important microorganisms associated with CRS and their pathogenic mechanisms against mucosal surfaces and epithelial barriers in the paranasal sinuses. Video Abstract.


Assuntos
Pseudomonas aeruginosa , Sinusite , Humanos , Staphylococcus aureus , Depuração Mucociliar , Sinusite/microbiologia , Sinusite/patologia , Mucosa Nasal/metabolismo , Mucosa Nasal/microbiologia , Mucosa Nasal/patologia , Junções Íntimas , Bactérias , Doença Crônica
3.
J Clin Lab Anal ; 37(9-10): e24932, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37377167

RESUMO

BACKGROUND: The emergence of ciprofloxacin-resistant bacteria is a serious challenge worldwide, bringing the need to find new approaches to manage this bacterium. Bacteriophages (phages) have been shown inhibitory effects against ciprofloxacin-resistance bacteria; thus, ciprofloxacin resistance or tolerance may not affect the phage's infection ability. Additionally, researchers used phage-ciprofloxacin combination therapy for the inhibition of multidrug-resistant bacteria. RESULTS: The sublethal concentrations of ciprofloxacin could lead to an increase in progeny production. Antibiotic treatments could enhance the release of progeny phages by shortening the lytic cycle and latent period. Thus, sublethal concentrations of antibiotics combined with phages can be used for the management of bacterial infections with high antibiotic resistance. In addition, combination therapy exerts various selection pressures that can mutually decrease phage and antibiotic resistance. Moreover, phage ciprofloxacin could significantly reduce bacterial counts in the biofilm community. Immediate usage of phages after the attachment of bacteria to the surface of the flow cells, before the development of micro-colonies, could lead to the best effect of phage therapy against bacterial biofilm. Noteworthy, phage should be used before antibiotics usage because this condition may have allowed phage replication to occur first before ciprofloxacin interrupted the bacterial DNA replication process, thereby interfering with the activity of the phages. Furthermore, the phage-ciprofloxacin combination showed a promising result for the management of Pseudomonas aeruginosa infections in mouse models. Nevertheless, low data are existing about the interaction between phages and ciprofloxacin in combination therapies, especially regarding the emergence of phage-resistant mutants. Additionally, there is a challenging and important question of how the combined ciprofloxacin with phages can increase antibacterial functions. Therefore, more examinations are required to support the clinical usage of phage-ciprofloxacin combination therapy.


Assuntos
Infecções Bacterianas , Bacteriófagos , Infecções por Pseudomonas , Animais , Camundongos , Ciprofloxacina/farmacologia , Ciprofloxacina/uso terapêutico , Bacteriófagos/fisiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções Bacterianas/terapia , Infecções por Pseudomonas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA