RESUMO
Dehydration of a cellulose nanofiber (CNF)/water dispersion requires large amounts of energy and time due to the high hydrophilicities and high specific surface areas of the CNFs. Various dehydration methods have been proposed for CNF/water dispersions; however, an efficient dehydration method for individually dispersed CNFs is needed. Here, electrodeposition of CNFs was evaluated as a dehydration method. Electrodeposition at a DC voltage of 10 V on a 0.2 wt% CNF/water dispersion resulted in a concentration of â¼1.58 wt% in 1 h. The dehydration energy efficiency was â¼300 times greater than that of dehydration by evaporation. The concentrated CNF hydrogels recovered after electrodeposition were redispersed with a simple neutralization process, and clear transparent films were obtained by drying after redispersion. This work provides a new method for dehydration and reuse of individually dispersed CNF/water dispersions and provides new insights into control of the hierarchical structures of CNFs by electrodeposition.
RESUMO
Elastic carbon aerogels show great potential for various applications but are often hindered by structure-derived fatigue failure, weak elasticity with low compressibility, and low stress and height retention. Herein, we demonstrate a super-elastic and fatigue-resistant nanochitin-derived carbon honeycomb with honeycomb-like anisotropic microstructures and carbon-based molecular structures, which was tailored by optimizing the nanochitin concentrations and carbonization temperatures. The carbon honeycomb fabricated at a nanochitin concentration of 1.0 wt % and a carbonization temperature of 900 °C demonstrated anisotropic honeycomb channels, nanofibrous network channel walls with few cracks, and weak interactions between the carbonized nanochitin, which afforded high compressibility with up to 90% strain and complete recovery. In particular, the carbon honeycomb provided good fatigue resistance with high stress and height retentions of 87 and 94%, respectively, after more than 10,000 compression cycles at 90% strain. Moreover, the tailored anisotropic honeycomb channels and molecular structures endowed the carbon honeycomb with elasticity even under severe conditions, such as exposure to flame (approximately 1000 °C) and liquid nitrogen (approximately -196 °C). Owing to these properties, the nanochitin-derived carbon honeycomb could act as a high-sensitivity pressure sensor for a wide working pressure range of 0-185.5 kPa and ultrawide temperature range of -196-600 °C. This study can provide a promising route to develop all-biomass-derived, super-elastic, and fatigue-resistant carbon materials for pressure sensing under harsh conditions and for versatile electronic applications.
RESUMO
Optically transparent materials that are air permeable have potentially numerous applications, including in wearable devices. From the perspective of sustainable development, 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidized cellulose nanofibers with widths of 3-4 nm have attracted considerable attention as starting materials for the preparation of clearly transparent nanofiber paper (denoted as conventional nanopaper). However, conventional nanopaper that is prepared from a water dispersion of TEMPO-oxidized cellulose nanofibers by direct drying exhibits poor air permeability owing to its densely packed layered structure. In this study, we prepared a clearly transparent and air-permeable nanopaper by applying filtration-based solvent exchange from high-surface-tension water to low-surface-tension ethanol and hexane, followed by drying under continuous vacuum filtration. The resulting hexane-exchanged nanopaper had a porous structure with individually dispersed and thin nanofiber networks and interlayer pore spaces. Owing to the tailored porous structures, the hexane-exchanged nanopaper provides similar clear transparency (total light transmittance and haze at 600 nm: 92.9% and 7.22%, respectively) and 106 times higher air permeability (7.8 × 106 mL µm m-2 day-1 kPa-1) compared to the conventional nanopaper. This study will facilitate the development of clearly transparent and air-permeable nanopapers to extend their functional applications.
RESUMO
Remarkable progress has been made in the development of carbonized chitin nanofiber materials for various functional applications, including solar thermal heating, owing to their N- and O-doped carbon structures and sustainable nature. Carbonization is a fascinating process for the functionalization of chitin nanofiber materials. However, conventional carbonization techniques require harmful reagents, high-temperature treatment, and time-consuming processes. Although CO2 laser irradiation has progressed as a facile and second-scale high-speed carbonization process, CO2-laser-carbonized chitin nanofiber materials and their applications have not yet been explored. Herein, we demonstrate the CO2-laser-induced carbonization of chitin nanofiber paper (denoted as chitin nanopaper) and investigate the solar thermal heating performance of the CO2-laser-carbonized chitin nanopaper. While the original chitin nanopaper was inevitably burned out by CO2 laser irradiation, CO2-laser-induced carbonization of the chitin nanopaper was achieved by pretreatment with calcium chloride as a combustion inhibitor. The CO2-laser-carbonized chitin nanopaper exhibits excellent solar thermal heating performance; its equilibrium surface temperature under 1 sun irradiation is 77.7 °C, which is higher than those of the commercial nanocarbon films and the conventionally carbonized bionanofiber papers. This study paves the way for the high-speed fabrication of carbonized chitin nanofiber materials and their application in solar thermal heating toward the effective utilization of solar energy as heat.
RESUMO
Water containing low amounts of cellulose nanofiber (CNF) is widely used as a thickening agent owing to its three unique properties: high transparency, viscosity, and controllable viscosity based on the shear rate. CNF dry powders are used to reduce the transportation and storage costs or expand applications as a thickening agent. Herein, the preparation of CNF dry powders that can be used to obtain redispersions while maintaining the aforementioned properties is reported. In this regard, the dehydration and vaporization procedures for a CNF water dispersion without using additives are discussed. When dry powders are prepared by removing water by boiling, their redispersions do not exhibit all their unique properties because of dense aggregations. However, when their redispersions are vigorously stirred to break the dense aggregations, they become transparent, although they do not recover their initial viscosity. Freeze-dried powders recover all their initial properties after redispersion. Nevertheless, their large volume does not reduce the transportation and storage costs. When the liquid is evaporated from the solvent-exchanged CNF organogels, their redispersions also fully recover all their properties. Furthermore, the evaporative dry powders with dense small volumes and good handling contribute to reducing the transportation and storage costs.
Assuntos
Nanofibras , Água , Pós , Viscosidade , CeluloseRESUMO
Sustainable biomass-derived carbons have attracted research interest because of their ability to effectively absorb and convert solar light to thermal energy, a phenomenon known as solar thermal heating. Although their carbon-based molecular and nanoporous structures should be customized to achieve enhanced solar thermal heating performance, such customization has insufficiently progressed. In this study, we transformed a chitin nanofiber/water dispersion into paper, referred to as chitin nanopaper, with subwavelength nanoporous structures by spatially controlled drying, followed by temperature-controlled carbonization without any pretreatment to customize the carbon-based molecular structures. The optimal carbonization temperature for enhancing the solar absorption and solar thermal heating performance of the chitin nanopaper was determined to be 400 °C. Furthermore, we observed that the nitrogen component, which afforded nitrogen-doped carbon structures, and the high morphological stability of chitin nanofibers against carbonization, which maintained subwavelength nanoporous structures even after carbonization, contributed to the improved solar absorption of the carbonized chitin nanopaper. The carbonized chitin nanopaper exhibited a higher solar thermal heating performance than the carbonized cellulose nanopaper and commercial nanocarbon materials, thus demonstrating significant potential as an excellent solar thermal material.
RESUMO
The orientation control and the formation of hierarchical structures of nanoscale components, such as bionanofibers and nanosheets, have attracted considerable research interest with the aim of achieving sophisticated functional materials. Herein, we report a simple and flexible strategy for constructing sophisticated hierarchical structures through electrophoretic and electrochemical deposition. Cellulose nanofibers (CNFs), which are used as model materials, are deposited on an anode in an aqueous dispersion and seamlessly oriented from horizontal to vertical relatively to the electrode by adjusting the applied voltage between the electrodes. The oriented CNF hydrogels not only exhibit anisotropic mechanical properties but also form complex orientations and hierarchical structures, such as cartilage- and plant stem-like configurations in response to electrode shape and applied voltage. This simple and flexible technique is expected to be applicable to various materials and contribute to a wide range of fields that include biomimicry, functional nanomaterials, and sustainable and functional moldings.
RESUMO
Semiconducting nanomaterials with 3D network structures exhibit various fascinating properties such as electrical conduction, high permeability, and large surface areas, which are beneficial for adsorption, separation, and sensing applications. However, research on these materials is substantially restricted by the limited trans-scalability of their structural design and tunability of electrical conductivity. To overcome this challenge, a pyrolyzed cellulose nanofiber paper (CNP) semiconductor with a 3D network structure is proposed. Its nano-micro-macro trans-scale structural design is achieved by a combination of iodine-mediated morphology-retaining pyrolysis with spatially controlled drying of a cellulose nanofiber dispersion and paper-crafting techniques, such as microembossing, origami, and kirigami. The electrical conduction of this semiconductor is widely and systematically tuned, via the temperature-controlled progressive pyrolysis of CNP, from insulating (1012 Ω cm) to quasimetallic (10-2 Ω cm), which considerably exceeds that attained in other previously reported nanomaterials with 3D networks. The pyrolyzed CNP semiconductor provides not only the tailorable functionality for applications ranging from water-vapor-selective sensors to enzymatic biofuel cell electrodes but also the designability of macroscopic device configurations for stretchable and wearable applications. This study provides a pathway to realize structurally and functionally designable semiconducting nanomaterials and all-nanocellulose semiconducting technology for diverse electronics.
RESUMO
Biomass-derived three-dimensional (3D) porous nanocarbons have attracted much attention due to their high surface area, permeability, electrical conductivity, and renewability, which are beneficial for various electronic applications, including energy storage. Cellulose, the most abundant and renewable carbohydrate polymer on earth, is a promising precursor to fabricate 3D porous nanocarbons by pyrolysis. However, the pyrolysis of cellulosic materials inevitably causes drastic carbon loss and volume shrinkage. Thus, polydopamine doping prior to the pyrolysis of cellulose nanofiber paper is proposed to fabricate the 3D porous nanocarbons with improved yield and volume retention. Our results show that a small amount of polydopamine (4.3 wt%) improves carbon yield and volume retention after pyrolysis at 700 °C from 16.8 to 26.4% and 15.0 to 19.6%, respectively. The pyrolyzed polydopamine-doped cellulose nanofiber paper has a larger specific surface area and electrical conductivity than cellulose nanofiber paper that without polydopamine. Owing to these features, it also affords a good specific capacitance up to 200 F g-1 as a supercapacitor electrode, which is higher than the recently reported cellulose-derived nanocarbons. This method provides a pathway for the effective fabrication of high-performance cellulose-derived 3D porous nanocarbons.
RESUMO
Chitin, a natural polysaccharide polymer, forms highly crystalline nanofibers and is expected to have sophisticated engineering applications. In particular, for development of next-generation heat-transfer and heat-insulating materials, analysis of the thermal conductivity is important, but the thermal conductivity properties of chitin nanofiber materials have not been reported. The thermal conductivity properties of chitin nanofiber materials are difficult to elucidate without excluding the effect of adsorbed water and analyzing the influence of surface amino groups. In this study, we aimed to accurately evaluate the thermal conductivity properties of chitin nanofiber films by changing the content of surface amino groups and measuring the thermal diffusivity under dry conditions. Chitin and deacetylated-chitin nanofiber films with surface deacetylation of 5.8% and 25.1% showed in-plane thermal conductivity of 0.82 and 0.73 W/mK, respectively. Taking into account that the films had similar crystalline structures and almost the same moisture contents, the difference in the thermal conductivity was concluded to only depend on the amino group content on the fiber surfaces. Our methodology for measuring the thermal diffusivity under conditioned humidity will pave the way for more accurate analysis of the thermal conductivity performance of hydrophilic materials.
RESUMO
We propose a new methodology for direct evaluation of the degree of fibrillation of fibrillating pulp suspensions through the pixel-resolved retardation distribution. Through simple normalization by just injecting a pulp suspension with a certain concentration into a quartz flow channel with a constant cross-sectional shape, the degree of fibrillation (i.e., the degree of bundling of cellulose molecular chains) can be directly mapped by the retardation gradation, reflecting locally high retardation (pulp fibers), smaller retardation (balloons on fibrillating pulps), and much smaller retardation close to water (dispersed nanofibers). Both the average retardation and standard deviation are found to be the direct indicators of the degree of fibrillation. We envision that the proposed methodology will become the future standard for determining the degree of fibrillation by the retardation distribution, and it will pave the way for more precise control of pulp fibrillation and more sophisticated applications of cellulose nanofiber suspensions.
Assuntos
Celulose/química , Cryptomeria/química , Nanofibras/química , Madeira/química , Birrefringência , Celulose/ultraestrutura , Humanos , Nanofibras/ultraestrutura , Suspensões/química , Água/químicaRESUMO
As a renewable nanomaterial, transparent nanopaper is one of the promising materials for electronic devices. Although conventional evaporation drying method endows nanopaper with superior optical properties, the long fabrication time limits its widely use. In this work, we propose a multi-stage drying method to achieve high-speed fabrication of clear transparent nanopaper. Drying experiments reveal that nanopaper's drying process can be separated into two periods. For the conventional single-stage evaporation drying, the drying condition is kept the same. In our newly proposed multi-stage drying, the relative humidity (RH), which is the key parameter for both drying time and haze, is set differently during these two periods. Applying this method in a humidity-controllable environmental chamber, the drying time can be shortened by 35% (from 11.7 h to 7.6 h) while maintaining the same haze level as that from single-stage drying. For a conventional humidity-uncontrollable oven, a special air flow system is added. The air flow system enables decrease of RH by removing water vapor at the water/air interface during the earlier period, thus fabricating clear transparent nanopaper in a relatively short time. Therefore, this humidity-controlled multi-stage drying method will help reduce the manufacturing time and encourage the widespread use of future nanopaper-based flexible electronics.
RESUMO
It is essential to build multiaxis oriented nanocellulose films in the plane for developing thermal or optical management films. However, using conventional orientation techniques, it is difficult to align nanocelluloses in multiple directions within the plane of single films rather than in the thickness direction like the chiral nematic structure. In this study, we developed the liquid-phase three-dimensional (3D) patterning technique by combining wet spinning and 3D printing. Using this technique, we produced a checkered film with multiaxis oriented nanocelluloses. This film showed similar retardation levels, but with orthogonal molecular axis orientations in each checkered domain as programmed. The thermal transport was enhanced in the domain with the oriented pattern parallel to the heat flow. This liquid-phase 3D patterning technique could pave the way for bottom-up design of differently aligned nanocellulose films to develop sophisticated optical and thermal materials.
RESUMO
Thermal transport modulating materials show great potential to address the heat problems in a wide range of engineering fields. However, tuning the thermal conductivity of solid-state materials is practically difficult because it requires specific or extreme stimulation, such as chemical composition change, a phase transition, or large applied fluctuations, to change the internal bulk structures. Here, we report reversible switching of the in-plane thermal diffusivity of densely packed cellulose nanofiber (CNF) films by â¼15% by simple mechanical strain as small as 0.3%. From analysis of the stress relaxation profiles and the different bulk densities of the CNF films, the interfacial elastic dynamics between the strongly hydrogen bonded CNFs were found to exhibit thermal diffusivity modulation by tuning the interfacial thermal resistance, rather than changing the bulk structure of the CNFs. Our concept of interfacial-elasticity-driven thermal diffusivity switching has the potential to enhance the on/off rate and extensibility toward practical use owing to the high designability of the interfacial conditions.
RESUMO
Plasmonic nanoparticles, such as gold nanoparticles (AuNPs), have been actively applied in solar vapor generation for seawater desalination and water purification, owing to their photothermal heating performances. Such nanoparticles have been frequently anchored within porous supporting materials to ensure easy handling and water absorption. However, there has been limited progress in improving the transport efficiency of light to nanoparticles within porous supports to achieve more effective photothermal heating. Here, we show an enhanced light absorption of AuNPs by supporting on a cellulose paper with tailored porous structures for efficient photothermal heating. The paper consists of AuNP-anchored cellulose nanofibers and cellulose pulp as the top and bottom layers, respectively, which provides dual-layered porous nano-microstructures in the perpendicular direction. Then, the bottom layer with pulp-derived microstructures reflects the transmitted light back to AuNPs within the top layer, which improves their light absorptivity. Thus, under 1 sun illumination, the dual-layered paper demonstrates superior performance in photothermal heating (increases from 28 °C to 46 °C) and solar vapor generation (1.72 kg m-2 h-1) compared with the single-layered AuNP-anchored cellulose nanofiber paper even at the same AuNP content. Furthermore, the water evaporation rate per AuNP content of the dual-layered paper is more than 2 times higher than those of the state-of-the-art AuNP-anchored porous materials under the same light irradiation. This strategy enables the efficient use of precious plasmonic nanoparticles for further development of solar vapor generation.
RESUMO
A nanopaper sensor device that combines humidity sensing, wireless information transmission, and degradability has been fabricated using wood-derived nanopaper as the substrate and dielectric layers. The nanopaper shows excellent suitability for capacitor dielectric layers because of its high dielectric constant, insulating properties suitable for thin-film formation, and lamination properties. A wireless transmission circuit containing the nanopaper capacitor can transmit radio signals in the megahertz band, and the relative humidity change can be output as a change in the radio signal owing to the humidity sensitivity of the nanopaper capacitor. More than 95% of the total volume of the nanopaper sensor device decomposes in soil after 40 days. Because the nanopaper sensor device does not need to be recovered, it is expected to greatly contribute to a sustainable society through realization of hyperdense observation networks by mass installation of sensor devices.
RESUMO
In this paper, transparent electrodes with dense Cu@Ag alloy nanowires embedded in the stretchable substrates are successfully fabricated by a high-intensity pulsed light (HIPL) technique within one step. The intense light energy not only induces rapid mutual dissolution between the Cu core and the Ag shell to form dense Cu@Ag alloy nanowires but also embeds the newly formed alloy nanowires into the stretchable substrates. The combination of alloy nanowires and embedded structures greatly improve the thermal stability of the transparent electrodes that maintain a high conductivity unchanged in both high temperature (140 °C) and high humidity (85 °C, 85% RH) for at least 500 h, which is much better than previous reports. The transparent electrodes also exhibit high electromechanical stability due to the strong adhesion between alloy nanowires and substrates, which remain stable after 1000 stretching-relaxation cycles at 30% strain. Stretchable and transparent heaters based on the alloyed and embedded electrodes have a wide outputting temperature range (up to 130 °C) and show excellent thermal stability and stretchability (up to 60% strain) due to the alloy nanowires and embedded structures. To sum up, this study proposes the combination of alloying and embedding structures to greatly improve the stability of Cu nanowire-based stretchable transparent electrodes, showing a huge application prospect in the field of stretchable and wearable electronics.
RESUMO
Progress toward the concept of "a trillion sensor universe" requires sensor devices to become more abundant, ubiquitous, and be potentially disposable. Here, we report a paper-based disposable molecular sensor device constructed from a nanowire sensor based on common zinc oxide (ZnO), a wood-derived biodegradable cellulose nanofiber paper substrate, and a low-cost graphite electrode. The ZnO nanowire/cellulose nanofiber composite structure is embedded in the surface of the cellulose nanofiber paper substrate via a two-step papermaking process. This structure provides a mechanically robust and efficiently bridged network for the nanowire sensor, while ensuring efficient access to target molecules and allowing reliable electrical contact with electrodes. The as-fabricated paper sensor device with pencil-drawn graphite electrodes exhibits efficient resistance change-based molecular sensing of NO2 as a model gas. The performance of our device is comparable to that of noble metal electrodes. Furthermore, we demonstrate cut-and-paste usability and easy disposal of the sensor device with its uniform in-plane sensing properties. Our strategy offers a disposable molecular sensing platform for use in future sensor network technologies.
RESUMO
The intrinsic birefringence of cellulose is one of the most fundamental optical parameters for analyzing and developing various cellulosic materials. However, the previously reported values greatly vary depending on the problems occurred due to the measured cellulose sample or method, and it is still a challenge to evaluate the intrinsic birefringence of cellulose using suitable cellulose samples and methodologies by taking account into the recent knowledge and techniques. Here, we estimated the intrinsic birefringence of cellulose to be 0.09 by a procedure with three valid factors: (1) bacterial cellulose nanofibers consisting of extended chain crystals of cellulose are used, (2) films with relatively small orientation degrees are fabricated, and (3) the in-plane retardation maps are measured. The resultant eigenvalue is greater than those reported for cellulose and many petroleum-based polymers. Therefore, cellulose could be used to develop high-performance light compensation films with large optical anisotropies for use in future optoelectronic devices.
RESUMO
Nanopaper prepared from holocellulose pulp is one of the best substrates for flexible electronics because of its high thermal resistance and high clear transparency. However, the clearness of nanopaper decreases with increasing concentration of the starting cellulose nanofiber dispersion-with the use of a 2.2 wt % dispersion, for example-resulting in translucent nanopaper with a high haze of 44%. To overcome this problem, we show that the dilution of this high-concentration dispersion with water followed by sonication for 10 s reduces the haze to less than 10% while maintaining the high thermal resistance of the nanopaper. Furthermore, the combination of water dilution and a short sonication treatment improves the clearness of the nanopaper, which would translate into cost savings for the transportation and storage of this highly concentrated cellulose nanofiber dispersion. Finally, we demonstrate the improvement of the electrical conductivity of clear transparent nanopaper prepared from an initially high-concentration dispersion by dropping and heating silver nanowire ink on the nanopaper. These achievements will pave the way toward the realization of the mass production of nanofiber-based flexible devices.