Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mater Horiz ; 10(12): 5822-5834, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37842783

RESUMO

In recent years, perovskite nanocrystal superlattices have been reported with collective optical phenomena, offering a promising platform for both fundamental science studies and device engineering. In this same avenue, superlattices of perovskite nanoplates can be easily prepared on different substrates, and they too present an ensemble optical response. However, the self-assembly and optical properties of these aggregates in solvents have not been reported to date. Here, we report on the conditions for this self-assembly to occur and show a simple strategy to induce the formation of these nanoplate stacks in suspension in different organic solvents. We combined wide- and small-angle X-ray scattering and scanning transmission electron microscopy to evaluate CsPbBr3 and CsPbI3 perovskite nanoplates with different thickness distributions. We observed the formation of these stacks by changing the concentration of nanoplates and the viscosity of the colloidal suspensions, without the need for antisolvent addition. We found that, in hexane, the concentration for the formation of the stacks is rather high and approximately 80 mg mL-1. In contrast, in decane, dodecane, and hexadecane, we observe a much easier self-assembly of the nanoplates, presenting a clear correlation between the degree of aggregation and viscosity. We, then, discuss the impact of the self-assembly of perovskite nanoplates on Förster resonant energy transfer. Our predictions suggest an energy transfer efficiency higher than 50% for all the donor-acceptor systems evaluated. In particular, we demonstrate how the aggregation of these particles in hexadecane induces FRET for CsPbBr3 nanowires. For the n = 2 nanowires (donor) to the n = 3 nanowires (acceptor), the FRET rate was found to be 4.1 ns-1, with an efficiency of 56%, in agreement with our own predictions.

2.
ACS Nano ; 15(4): 6499-6506, 2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33769788

RESUMO

Perovskite nanoplatelets possess extremely narrow absorption and emission line widths, which are crucial characteristics for many optical applications. However, their underlying intrinsic and extrinsic line-broadening mechanisms are poorly understood. Here, we apply multidimensional coherent spectroscopy to determine the homogeneous line broadening of colloidal perovskite nanoplatelet ensembles. We demonstrate a dependence of not only their intrinsic line widths but also of various broadening mechanisms on platelet geometry. We find that decreasing nanoplatelet thickness by a single monolayer results in a 2-fold reduction of the inhomogeneous line width and a 3-fold reduction of the intrinsic homogeneous line width to the sub-millielectronvolts regime. In addition, our measurements suggest homogeneously broadened exciton resonances in two-layer (but not necessarily three-layer) nanoplatelets at room-temperature.

3.
Sci Adv ; 7(1)2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33523833

RESUMO

Advances in optoelectronics require materials with novel and engineered characteristics. A class of materials that has garnered tremendous interest is metal-halide perovskites, stimulated by meteoric increases in photovoltaic efficiencies of perovskite solar cells. In addition, recent advances have applied perovskite nanocrystals (NCs) in light-emitting devices. It was found recently that, for cesium lead-halide perovskite NCs, their unusually efficient light emission may be due to a unique excitonic fine structure composed of three bright triplet states that minimally interact with a proximal dark singlet state. To study this fine structure without isolating single NCs, we use multidimensional coherent spectroscopy at cryogenic temperatures to reveal coherences involving triplet states of a CsPbI3 NC ensemble. Picosecond time scale dephasing times are measured for both triplet and inter-triplet coherences, from which we infer a unique exciton fine structure level ordering composed of a dark state energetically positioned within the bright triplet manifold.

4.
RSC Adv ; 11(24): 14374-14398, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35424005

RESUMO

Graphene and its derivatives have emerged as potential materials for several technological applications including sunlight-driven water splitting reactions. This review critically addresses the latest achievements concerning the use of graphene as a player in the design of hybrid-photoelectrodes for photoelectrochemical cells. Insights about the charge carrier dynamics of graphene-based photocatalysts which include metal oxides and non-metal oxide semiconductors are also discussed. The concepts underpinning the continued progress in the field of graphene/photoelectrodes, including different graphene structures, architecture as well as the possible mechanisms for hydrogen and oxygen reactions are also presented. Despite several reports having demonstrated the potential of graphene-based photocatalysts, the achieved performance remains far from the targeted benchmark efficiency for commercial application. This review also highlights the challenges and opportunities related to graphene application in photoelectrochemical cells for future directions in the field.

5.
J Chem Phys ; 151(19): 191103, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31757140

RESUMO

The bandgaps of CsPbI3 perovskite nanocrystals are measured by absorption spectroscopy at cryogenic temperatures. Anomalous bandgap shifts are observed in CsPbI3 nanocubes and nanoplatelets, which are modeled accurately by bandgap renormalization due to lattice vibrational modes. We find that decreasing dimensionality of the CsPbI3 lattice in nanoplatelets greatly reduces electron-phonon coupling, and dominant out-of-plane quantum confinement results in a homogeneously broadened absorption line shape down to cryogenic temperatures. An absorption tail forms at low-temperatures in CsPbI3 nanocubes, which we attribute to shallow defect states positioned near the valence band edge.

6.
Sci Rep ; 9(1): 11785, 2019 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-31409841

RESUMO

Bismuth triiodide (BiI3) has been studied in recent years with the aim of developing lead-free semiconductors for photovoltaics. It has also appeared in X-ray detectors due to the high density of the Bismuth element. This material is attractive as an active layer in solar cells, or may be feasible for conversion into perovskite-like material (MA3Bi2I9), being also suitable for photovoltaic applications. In this study, we report on the thermomechanical properties (stress, hardness, coefficient of thermal expansion, and biaxial and reduced Young's moduli) of BiI3 thin films deposited by thermal evaporation. The stress was determined as a function of temperature, adopting the thermally induced bending technique, which allowed us to extract the coefficient of thermal expansion (31 × 10-6 °C-1) and Young's biaxial modulus (19.6 GPa) for the films. Nanohardness (~0.76 GPa) and a reduced Young's modulus of 27.1 GPa were determined through nanoindentation measurements.

7.
Environ Toxicol ; 34(11): 1177-1190, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31322327

RESUMO

For several years, the scientific community has been concerned about the presence of pharmaceuticals in the wild, since these compounds may have unpredictable deleterious effects on living organisms. Two examples of widely used pharmaceuticals that are present in the environment are paracetamol and ciprofloxacin. Despite their common presence in the aquatic environment due to their poor removal by sewage treatment plants, knowledge concerning their putative toxic effects is still scarce. This work aimed to characterize the effects of paracetamol (0.005, 0.025, 0.125, 0.625, and 3.125 mg/L) and ciprofloxacin (0.005, 0.013, 0.031, 0.078, 0.195, and 0.488 µg/L) in zebrafish embryos and larvae, exposed to environmentally relevant levels, close to the real concentrations of these pharmaceuticals in surface waters and effluents. The adopted toxic end points were developmental, a behavioral parameter (total swimming time), and a biomarker-based approach (quantification of the activities of catalase, glutathione-S-transferase, cholinesterases, glutathione peroxidase, and lipid peroxidation levels) combined with epigenetic analysis (immunohistochemical detection of 5-methylcytidine). Exposure to paracetamol had effects on all of the adopted toxic end points; however, ciprofloxacin only caused effects on behavioral tests and alterations in biomarkers. It is possible to ascertain the occurrence of oxidative stress following exposure to both drugs, which was more evident regarding paracetamol, an effect that may be related to the observed epigenetic modifications.


Assuntos
Acetaminofen/toxicidade , Ciprofloxacina/toxicidade , Epigênese Genética , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/metabolismo , Animais , Biomarcadores/metabolismo , Catalase/metabolismo , Metilação de DNA , Desenvolvimento Embrionário/efeitos dos fármacos , Glutationa Peroxidase/metabolismo , Larva/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Locomoção/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Peixe-Zebra/crescimento & desenvolvimento
8.
J Phys Chem Lett ; 9(12): 3463-3469, 2018 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-29882399

RESUMO

Hybrid organic-inorganic perovskites containing Cs are a promising new material for light-absorbing and light-emitting optoelectronics. However, the impact of environmental conditions on their optical properties is not fully understood. Here, we elucidate and quantify the influence of distinct humidity levels on the charge carrier recombination in Cs xFA1- xPb(I yBr1- y)3 perovskites. Using in situ environmental photoluminescence (PL), we temporally and spectrally resolve light emission within a loop of critical relative humidity (rH) levels. Our measurements show that exposure up to 35% rH increases the PL emission for all Cs (10-17%) and Br (17-38%) concentrations investigated here. Spectrally, samples with larger Br concentrations exhibit PL redshift at higher humidity levels, revealing water-driven halide segregation. The compositions considered present hysteresis in their PL intensity upon returning to a low-moisture environment due to partially reversible hydration of the perovskites. Our findings demonstrate that the Cs/Br ratio strongly influences both the spectral stability and extent of light emission hysteresis. We expect our method to become standard when testing the stability of emerging perovskites, including lead-free options, and to be combined with other parameters known for affecting material degradation, e.g., oxygen and temperature.

9.
J Phys Chem Lett ; 9(12): 3478-3484, 2018 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-29882410

RESUMO

Perovskite quantum dots (PQDs) emerged as a promising class of material for applications in lighting devices, including light emitting diodes and lasers. In this work, we explore nonlinear absorption properties of PQDs showing the spectral signatures and the size dependence of their two-photon absorption (2PA) cross-section, which can reach values higher than 106 GM. The large 2PA cross section allows for low threshold two-photon induced amplified spontaneous emission (ASE), which can be as low as 1.6 mJ/cm2. We also show that the ASE properties are strongly dependent on the nanomaterial size, and that the ASE threshold, in terms of the average number of excitons, decreases for smaller PQDs. Investigating the PQDs biexciton binding energy, we observe strong correlation between the increasing on the biexciton binding energy and the decreasing on the ASE threshold, suggesting that ASE in PQDs is a biexciton-assisted process.

10.
Nano Lett ; 18(2): 805-810, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29276832

RESUMO

Surface photovoltage spectroscopy (SPS) is used to measure the photopotential across a Ru-SrTiO3:Rh/BiVO4 particle tandem overall water splitting photocatalyst. The tandem is synthesized from Ru-modified SrTiO3:Rh nanocrystals and BiVO4 microcrystals by electrostatic assembly followed by thermal annealing. It splits water into H2 and O2 with an apparent quantum efficiency of 1.29% at 435 nm and a solar to hydrogen conversion efficiency of 0.028%. According to SPS, a photovoltage develops above 2.20 eV, the effective band gap of the tandem, and reaches its maximal value of -2.45 V at 435 nm (2.44 mW cm-2), which corresponds to 96% of the theoretical limit of the photocatalyst film on the fluorine-doped tin-oxide-coated glass (FTO) substrate. Charge separation is 82% reversible with 18% of charge carriers being trapped in defect states. The unusually strong light intensity dependence of the photovoltage (1.16 V per decade) is attributed to depletion layer changes inside of the BiVO4 microcrystals. These findings promote the understanding of solar energy conversion with inorganic particle photocatalysts.

11.
ACS Appl Mater Interfaces ; 9(24): 20454-20466, 2017 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-28574246

RESUMO

Organic-inorganic hybrid layered materials are proposed as additives in a quasi-solid gel electrolyte for dye-sensitized solar cells. Talcs could provide a low-cost and environmentally friendly, as well as abundant, option as gelators. Here, talcs were prepared by functionalizing an organotalc with three polyamidopyridine dendron generations, PAMPy-talc-Gn (n = 1, 2 and 3). PAMPy dendrons grow parallel to the lamellae plane and form an organized structure by intermolecular interactions. In addition, polyiodide-dendron charge-transfer complexes were prepared onto the organotalc by adsorption of iodine. In this work, the effect of the dendron generation of PAMPy-talc and the influence of polyiodide intercalation on solar cell performance and stability were investigated. The best results were reached with the use of lowest-generation PAMPy-talc (η = 4.5 ± 0.3%, VOC = 710 ± 19 mV, Jsc = 10.4 ± 0.9 mA cm-2, and FF = 61 ± 2%): 15% higher efficiency compared to similar liquid devices. While some previously studied talcs illustrate very strong absorption of the iodide from the electrolyte, in the case of PAMPy-talc such interfering effects were absent: In a 1000 h light soaking test, the PAMPy-talc cells both with and without polyiodide intercalation demonstrated stable performances. Furthermore, the color analysis of the electrolyte indicated that the color of the electrolyte remained stable after an initial period of stabilization, which is a good indication of the compound being stable and not absorbing charge carriers from the electrolyte. The performance and stability results indicate that PAMPy-talc has potential as a gelling method for electrolytes for dye solar cells.

12.
ACS Nano ; 10(9): 8603-9, 2016 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-27574807

RESUMO

Cesium lead halide perovskite quantum dots (PQDs) have emerged as a promising new platform for lighting applications. However, to date, light emitting diodes (LED) based on these materials exhibit limited efficiencies. One hypothesized limiting factor is fast nonradiative multiexciton Auger recombination. Using ultrafast spectroscopic techniques, we investigate multicarrier interaction and recombination mechanisms in cesium lead halide PQDs. By mapping the dependence of the biexciton Auger lifetime and the biexciton binding energy on nanomaterial size and composition, we find unusually strong Coulomb interactions among multiexcitons in PQDs. This results in weakly emissive biexcitons and trions, and accounts for low light emission efficiencies. We observe that, for strong confinement, the biexciton lifetime depends linearly on the PQD volume. This dependence becomes sublinear in the weak confinement regime as the PQD size increases beyond the Bohr radius. We demonstrate that Auger recombination is faster in PQDs compared to CdSe nanoparticles having the same volume, suggesting a stronger Coulombic interaction in the PQDs. We confirm this by demonstrating an increased biexciton binding energy, which reaches a maximum of about 100 meV, fully three times larger than in CdSe quantum dots. The biexciton shift can lead to low-threshold optical gain in these materials. These findings also suggest that materials engineering to reduce Coulombic interaction in cesium lead halide PQDs could improve prospects for high efficiency optoelectronic devices. Core-shell structures, in particular type-II nanostructures, which are known to reduce the bandedge Coulomb interaction in CdSe/CdS, could beneficially be applied to PQDs with the goal of increasing their potential in lighting applications.

13.
Chemphyschem ; 17(1): 170-7, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26561385

RESUMO

Two effective methods to prepare reduced graphene oxide (rGO)/hematite nanostructured photoanodes and their photoelectrochemical characterization towards water splitting reactions are presented. First, graphene oxide (GO) is reduced to rGO using hydrazine in a basic solution containing tetrabutylammonium hydroxide (TBAOH), and then deposited over the nanostructured hematite photoanodes previously treated at 750 °C for 30 min. The second method follows the deposition of a paste containing a mixture of hematite nanoparticles and rGO sheets by the doctor-blade method, varying the rGO concentration. Since hematite suffers from low electron mobility, a low absorption coefficient, high recombination rates and slow reaction kinetics, the incorporation of rGO in the hematite can overcome such limitations due to graphene's exceptional properties. Using the first method, the rGO incorporation results in a photocurrent density increase from 0.56 to 0.82 mA cm(-2) at 1.23 VRHE. Our results indicate that the rGO incorporation in the hematite photoanodes shows a positive effect in the reduction of the electron-hole recombination rate.

14.
ACS Appl Mater Interfaces ; 7(45): 25007-13, 2015 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-26529572

RESUMO

Nanocrystals of CsPbX3 perovskites are promising materials for light-emitting optoelectronics because of their colloidal stability, optically tunable bandgap, bright photoluminescence, and excellent photoluminescence quantum yield. Despite their promise, nanocrystal-only films of CsPbX3 perovskites have not yet been fabricated; instead, highly insulating polymers have been relied upon to compensate for nanocrystals' unstable surfaces. We develop solution chemistry that enables single-step casting of perovskite nanocrystal films and overcomes problems in both perovskite quantum dot purification and film fabrication. Centrifugally cast films retain bright photoluminescence and achieve dense and homogeneous morphologies. The new materials offer a platform for optoelectronic applications of perovskite quantum dot solids.

15.
Nanoscale ; 6(12): 6371-97, 2014 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-24839190

RESUMO

In this review the use of solution-processed chalcogenide quantum dots (CdS, CdSe, PbS, etc.) in hybrid organic-inorganic solar cells is explored. Such devices are known as potential candidates for low-cost and efficient solar energy conversion, and compose the so-called third generation solar cells. The incorporation of oxides and metal nanoparticles has also been successfully achieved in this new class of photovoltaic devices; however, we choose to explore here chalcogenide quantum dots in light of their particularly attractive optical and electronic properties. We address herein a comprehensive review of the historical background and state-of-the-art comprising the incorporation of such nanoparticles in polymer matrices. Later strategies for surface chemistry manipulation, in situ synthesis of nanoparticles, use of continuous 3D nanoparticles network (aerogels) and ternary systems are also reviewed.

16.
Chem Commun (Camb) ; 49(73): 8096-8, 2013 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-23912253

RESUMO

In this report, hierarchical ZnO nano- and microstructures were directly grown for the first time on a bacterial cellulose substrate and on two additional different papers by hydrothermal synthesis without any surface modification layer. Compactness and smoothness of the substrates are two important parameters that allow the growth of oriented structures.


Assuntos
Celulose/química , Nanoestruturas/química , Papel , Óxido de Zinco/química , Bactérias/química , Microscopia Eletrônica de Varredura , Propriedades de Superfície
17.
Phys Chem Chem Phys ; 14(43): 15180-4, 2012 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-23034484

RESUMO

CdSe(ZnS) core(shell) aerogels were prepared from the assembly of quantum dots into mesoporous colloidal networks. The sol-gel method produces inorganic particle interfaces with low resistance to electrical transport while maintaining quantum-confinement. The photoelectrochemical properties of aerogels and their composites with poly(3-hexylthiophene) are reported for the first time.


Assuntos
Géis/química , Pontos Quânticos , Compostos de Cádmio/química , Técnicas Eletroquímicas , Eletrodos , Compostos de Selênio/química , Energia Solar , Tiofenos/química , Sulfato de Zinco/química
18.
Phys Chem Chem Phys ; 14(34): 11990-3, 2012 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-22842849

RESUMO

In this paper we focus on the effect of carboxylated thiophene small molecules as interface modifiers in TiO(2)/P3HT hybrid solar cells. Our results show that small differences in the chemical structure of these molecules, for example, the presence of the -CH(2)- group in the 2-thiopheneacetic acid (TAA), can greatly increase the TiO(2) surface wettability, improving the TiO(2)/polymer contact. This effect is important to enhance exciton splitting and charge separation.

19.
ACS Appl Mater Interfaces ; 1(12): 2870-7, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20356169

RESUMO

Polymer electrolytes based on mixtures of poly(ethylene oxide-co-propylene oxide) and 1-methyl-3-propyl-imidazolium iodide (MPII) were investigated, aiming at their application in dye-sensitized solar cells (DSSC). The interactions between the copolymer and the ionic liquid were analyzed by infrared spectroscopy and (1)H NMR. The results show interactions between the ether oxygen in the polymer and the hydrogen in the imidazolium cations. The ionic conductivities, electrochemical behaviors, and thermal properties of the electrolytes containing different concentrations of MPII were investigated. The electrolyte containing 70 wt % MPII presented the highest ionic conductivity (2.4 x 10(-3) S cm(-1)) and a diffusion coefficient of 1.9 x 10(-7) cm(2) s(-1). The influence of LiI addition to the electrolytes containing different concentrations of MPII was also investigated. The DSSC assembled with the electrolyte containing 70 wt % MPII showed an efficiency of 3.84% at 100 mW cm(-2). The stability of the devices for a period of 30 days was also evaluated using sealed cells. The devices assembled with the electrolyte containing less ionic liquid showed to be more stable.

20.
Inorg Chem ; 43(2): 396-8, 2004 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-14730997

RESUMO

Modification of wide band gap semiconductor surfaces by a new generation of supramolecular sensitizers combining porphyrin and ruthenium-polypyridyl complexes leads to versatile molecular interfaces, allowing the exploitation of photoinduced charge transfer in photoelectrochemical devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA