Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Free Radic Biol Med ; 218: 68-81, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38574975

RESUMO

Sarcopenia is associated with reduced quality of life and premature mortality. The sex disparities in the processes underlying sarcopenia pathogenesis, which include mitochondrial dysfunction, are ill-understood and can be decisive for the optimization of sarcopenia-related interventions. To improve the knowledge regarding the sex differences in skeletal muscle aging, the gastrocnemius muscle of young and old female and male rats was analyzed with a focus on mitochondrial remodeling through the proteome profiling of mitochondria-enriched fractions. To the best of our knowledge, this is the first study analyzing sex differences in skeletal muscle mitochondrial proteome remodeling. Data demonstrated that age induced skeletal muscle atrophy and fibrosis in both sexes. In females, however, this adverse skeletal muscle remodeling was more accentuated than in males and might be attributed to an age-related reduction of 17beta-estradiol signaling through its estrogen receptor alpha located in mitochondria. The females-specific mitochondrial remodeling encompassed increased abundance of proteins involved in fatty acid oxidation, decreased abundance of the complexes subunits, and enhanced proneness to oxidative posttranslational modifications. This conceivable accretion of damaged mitochondria in old females might be ascribed to low levels of Parkin, a key mediator of mitophagy. Despite skeletal muscle atrophy and fibrosis, males maintained their testosterone levels throughout aging, as well as their androgen receptor content, and the age-induced mitochondrial remodeling was limited to increased abundance of pyruvate dehydrogenase E1 component subunit beta and electron transfer flavoprotein subunit beta. Herein, for the first time, it was demonstrated that age affects more severely the skeletal muscle mitochondrial proteome of females, reinforcing the necessity of sex-personalized approaches towards sarcopenia management, and the inevitability of the assessment of mitochondrion-related therapeutics.


Assuntos
Envelhecimento , Músculo Esquelético , Sarcopenia , Animais , Masculino , Feminino , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Ratos , Envelhecimento/metabolismo , Sarcopenia/metabolismo , Sarcopenia/patologia , Mitocôndrias Musculares/metabolismo , Mitocôndrias Musculares/patologia , Estradiol/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Fibrose/metabolismo , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Proteoma/metabolismo , Fatores Sexuais , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Mitofagia
2.
Life Sci ; 336: 122324, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38042281

RESUMO

As people age, their skeletal muscle (SkM) experiences a decline in mitochondrial functionality and density, which leads to decreased energy production and increased generation of reactive oxygen species. This cascade of events, in turn, might determine the loss of SkM mass, strength and quality. Even though the mitochondrial processes dysregulated by aging, such as oxidative phosphorylation, mitophagy, antioxidant defenses and mtDNA transcription, are the same in both sexes, mitochondria age differently in the SkM of men and women. Indeed, the onset and magnitude of the impairment of these processes seem to be influenced by sex-specific factors. Sexual hormones play a pivotal role in the regulation of SkM mass through both genomic and non-genomic mechanisms. However, the precise mechanisms by which these hormones regulate mitochondrial plasticity in SkM are not fully understood. Although the presence of estrogen receptors in mitochondria is recognized, it remains unclear whether androgen receptors affect mitochondrial function. This comprehensive review critically dissects the current knowledge on the interplay of sex in the aging of SkM, focusing on the role of sex hormones and the corresponding signaling pathways in shaping mitochondrial plasticity. Improved knowledge on the sex dimorphism of mitochondrial aging may lead to sex-tailored interventions that target mitochondrial health, which could be effective in slowing or preventing age-related muscle loss.


Assuntos
Mitocôndrias , Sarcopenia , Masculino , Humanos , Feminino , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Envelhecimento/metabolismo , Sarcopenia/metabolismo , Atrofia Muscular/metabolismo , Hormônios Esteroides Gonadais/metabolismo , Mitocôndrias Musculares/metabolismo
3.
Biochim Biophys Acta Mol Basis Dis ; 1869(6): 166709, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37030522

RESUMO

Metabolic syndrome (MetS), characterized by a set of conditions that include obesity, hypertension, and dyslipidemia, is associated with increased cardiovascular risk. Exercise training (EX) has been reported to improve MetS management, although the underlying metabolic adaptations that drive its benefits remain poorly understood. This work aims to characterize the molecular changes induced by EX in skeletal muscle in MetS, focusing on gastrocnemius metabolic remodelling. 1H NMR metabolomics and molecular assays were employed to assess the metabolic profile of skeletal muscle tissue from lean male ZSF1 rats (CTL), obese sedentary male ZSF1 rats (MetS-SED), and obese male ZF1 rats submitted to 4 weeks of treadmill EX (5 days/week, 60 min/day, 15 m/min) (MetS-EX). EX did not counteract the significant increase of body weight and circulating lipid profile, but had an anti-inflammatory effect and improved exercise capacity. The decreased gastrocnemius mass observed in MetS was paralleled with glycogen degradation into small glucose oligosaccharides, with the release of glucose-1-phosphate, and an increase in glucose-6-phosphate and glucose levels. Moreover, sedentary MetS animals' muscle exhibited lower AMPK expression levels and higher amino acids' metabolism such as glutamine and glutamate, compared to lean animals. In contrast, the EX group showed changes suggesting an increase in fatty acid oxidation and oxidative phosphorylation. Additionally, EX mitigated MetS-induced fiber atrophy and fibrosis in the gastrocnemius muscle. EX had a positive effect on gastrocnemius metabolism by enhancing oxidative metabolism and, consequently, reducing susceptibility to fatigue. These findings reinforce the importance of prescribing EX programs to patients with MetS.


Assuntos
Síndrome Metabólica , Ratos , Masculino , Animais , Síndrome Metabólica/terapia , Síndrome Metabólica/metabolismo , Obesidade/metabolismo , Músculo Esquelético/metabolismo , Glucose/metabolismo , Peso Corporal
4.
Int J Mol Sci ; 23(21)2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36362368

RESUMO

Coronary artery disease (CAD) and the frequently coexisting aortic valve stenosis (AVS) are heart diseases accounting for most cardiac surgeries. These share many risk factors, such as age, diabetes, hypertension, or obesity, and similar pathogenesis, including endothelial disruption, lipid and immune cell infiltration, inflammation, fibrosis, and calcification. Unsuspected CAD and AVS are sometimes detected opportunistically through echocardiography, coronary angiography, and magnetic resonance. Routine biomarkers for early detection of either of these atherosclerotic-rooted conditions would be important to anticipate the diagnosis. With a noninvasive collection, urine is appealing for biomarker assessment. We conducted a shotgun proteomics exploratory analysis of urine from 12 CAD and/or AVS patients and 11 controls to identify putative candidates to differentiate these diseases from healthy subjects. Among the top 20 most dysregulated proteins, TIMP1, MMP2 and vWF stood out, being at least 2.5× increased in patients with CAD/AVS and holding a central position in a network of protein-protein interactions. Moreover, their assessment in an independent cohort (19 CAD/AVS and 10 controls) evidenced strong correlations between urinary TIMP1 and vWF levels and a common cardiovascular risk factor - HDL (r = 0.59, p < 0.05, and r = 0.64, p < 0.01, respectively).


Assuntos
Estenose da Valva Aórtica , Doença da Artéria Coronariana , Humanos , Doença da Artéria Coronariana/diagnóstico , Proteômica , Fator de von Willebrand , Estenose da Valva Aórtica/diagnóstico , Angiografia Coronária , Biomarcadores , Valva Aórtica/diagnóstico por imagem , Valva Aórtica/patologia
5.
Arch Biochem Biophys ; 730: 109419, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36183841

RESUMO

Exercise training provides several cardiovascular benefits in both physiological and pathological conditions; however, its use as a therapeutic tool for pulmonary arterial hypertension (PAH) has been poorly explored. This study aimed to extend the comprehension of the cardioprotective effects of exercise training in the set of PAH focusing on the metabolic changes promoted by exercise in the right ventricle (RV). The monocrotaline animal model of PAH was used and male Wistar rats were submitted to two weeks of treadmill exercise training (5 days/week, 60 min/day, 25 m/min) following disease establishment. Trained rats showed an improved diastolic function (lower end-diastolic pressure and tau) despite the presence of cardiac overload (increased peak systolic pressure, end-diastolic pressure and arterial elastance). This enhanced hemodynamic response was paralleled by an increased uptake of glucose to cardiomyocytes through glucose transporter type 4 (GLUT4) followed by increased lactate dehydrogenase (LDH) activity. Exercise did not reverse the decrease of fatty acid oxidation related to PAH but increased the content of the transcription factors peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) and peroxisome proliferator-activated receptor gamma (PPAR-γ). Two weeks of exercise did not modulate the changes in amino acid metabolism secondary to PAH. Our work suggests that continuous aerobic exercise of moderate intensity, despite its short-term duration and application in a late stage of the disease, supports the RV response to PAH by promoting a shift in the cardiac metabolic phenotype.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Masculino , Ratos , Animais , Monocrotalina/efeitos adversos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Hipertensão Pulmonar/terapia , Hipertensão Pulmonar/patologia , PPAR gama/metabolismo , Transportador de Glucose Tipo 4 , Ratos Wistar , Modelos Animais de Doenças , Glucose , Lactato Desidrogenases/metabolismo , Aminoácidos , Ácidos Graxos
6.
Int J Mol Sci ; 23(14)2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35886909

RESUMO

Prostate cancer (PCa) is one of the most lethal diseases in men, which justifies the search for new diagnostic tools. The aim of the present study was to gain new insights into the progression of prostate carcinogenesis by analyzing the urine proteome. To this end, urine from healthy animals and animals with prostate adenocarcinoma was analyzed at two time points: 27 and 54 weeks. After 54 weeks, the incidence of pre-neoplastic and neoplastic lesions in the PCa animals was 100%. GeLC-MS/MS and subsequent bioinformatics analyses revealed several proteins involved in prostate carcinogenesis. Increased levels of retinol-binding protein 4 and decreased levels of cadherin-2 appear to be characteristic of early stages of the disease, whereas increased levels of enolase-1 and T-kininogen 2 and decreased levels of isocitrate dehydrogenase 2 describe more advanced stages. With increasing age, urinary levels of clusterin and corticosteroid-binding globulin increased and neprilysin levels decreased, all of which appear to play a role in prostate hyperplasia or carcinogenesis. The present exploratory analysis can be considered as a starting point for studies targeting specific human urine proteins for early detection of age-related maladaptive changes in the prostate that may lead to cancer.


Assuntos
Próstata , Neoplasias da Próstata , Animais , Carcinogênese/patologia , Modelos Animais de Doenças , Masculino , Próstata/patologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/urina , Proteoma/química , Espectrometria de Massas em Tandem
7.
Inflamm Res ; 71(7-8): 771-783, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35680678

RESUMO

BACKGROUND: Inflammation is widely recognized as the driving force of cachexia induced by chronic diseases; however, therapies targeting inflammation do not always reverse cachexia. Thus, whether inflammation per se plays an important role in the clinical course of cachectic patients is still a matter of debate. AIMS: To give new insights into cachexia's pathogenesis and diagnosis, we performed a comprehensive literature search on the contribution of inflammatory markers to this syndrome, focusing on the noncommunicable diseases cancer and cardiovascular diseases. METHODS: A systematic review was performed in PubMed using the keywords ("cancer" OR "cardiac" cachexia AND "human" OR "patient" AND "plasma" or "serum"). A total of 744 studies were retrieved and, from these, 206 were selected for full-text screening. In the end, 98 papers focusing on circulating biomarkers of cachexia were identified, which resulted in a list of 113 different mediators. RESULTS: Data collected from the literature highlight the contribution of interleukin-6 (IL-6) and C-reactive protein (CRP) to cachexia, independently of the underlying condition. Despite not being specific, once the diagnosis of cachexia is established, CRP might help to monitor the effectiveness of anti-cachexia therapies. In cardiac diseases, B-type natriuretic peptide (BNP), renin, and obestatin might be putative markers of body wasting, whereas in cancer, growth differentiation factor (GDF) 15, transforming growth factor (TGF)-ß1 and vascular endothelial growth factor (VEGF) C seem to be better markers of this syndrome. Independently of the circulating mediators, NF-κB and JAK/STAT signaling pathways play a key role in bridging inflammation with muscle wasting; however, therapies targeting these pathways were not proven effective for all cachectic patients. CONCLUSION: The critical and integrative analysis performed herein will certainly feed future research focused on the better comprehension of cachexia pathogenesis toward the improvement of its diagnosis and the development of personalized therapies targeting specific cachexia phenotypes.


Assuntos
Mediadores da Inflamação , Neoplasias , Biomarcadores , Proteína C-Reativa/metabolismo , Caquexia/etiologia , Caquexia/metabolismo , Caquexia/patologia , Humanos , Inflamação/metabolismo , Neoplasias/patologia , Fator A de Crescimento do Endotélio Vascular
8.
J Mol Med (Berl) ; 100(2): 245-267, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34811581

RESUMO

Heart failure (HF) is growing in prevalence, due to an increase in aging and comorbidities. Heart failure with reduced ejection fraction (HFrEF) is more common in men, whereas heart failure with preserved ejection fraction (HFpEF) has a higher prevalence in women. However, the reasons for these epidemiological trends are not clear yet. Since HFpEF affects mostly postmenopausal women, sex hormones should play a pivotal role in HFpEF development. Furthermore, for HFpEF, contrary to HFrEF, effective therapeutic approaches are missing. Interestingly, studies evidenced that some therapies can have better results in women than in HFpEF men, emphasizing the necessity of understanding these observations at a molecular level. Thus, herein, we review the molecular mechanisms of estrogen and androgen actions in the heart in physiological conditions and explain how its dysregulation can lead to disease development. This clarification is essential in the road for an effective personalized management of HF, particularly HFpEF, towards the development of sex-specific therapeutic approaches.


Assuntos
Hormônios Esteroides Gonadais/metabolismo , Insuficiência Cardíaca/metabolismo , Miocárdio/metabolismo , Caracteres Sexuais , Remodelação Ventricular , Androgênios/metabolismo , Animais , Estrogênios/metabolismo , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/terapia , Humanos , Miocárdio/patologia
9.
Antioxid Redox Signal ; 37(7-9): 501-520, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-34847748

RESUMO

Significance: Infertility is a major global health problem, with nearly half of the cases being associated with male factors. Although reactive oxygen species (ROS) are crucial for sperm cell normal physiological processes, an imbalance between ROS production and antioxidants can lead to oxidative stress that can impair sperm function. Indeed, high semen ROS levels are reported in 30%-80% of infertile men. Recent Advances: Male oxidative stress infertility is an uprising classification for idiopathic infertility. Proteomic approaches, including quantitative mass spectrometry (MS)-based proteomics, are being utilized to explore the molecular mechanisms associated with oxidative stress in male infertility. Critical Issues: In this review, proteome data were collected from articles available on PubMed centered on MS-based proteomic studies, performed in seminal plasma and sperm cell samples, and enrolling men with impaired semen parameters. The bioinformatic analysis of proteome data with Cytoscape (ClueGO+CluePedia) and STRING tools allowed the identification of the biological processes more prevalent in asthenozoospermia, with focus on the ones related to oxidative stress. Future Directions: The identification of the antioxidant proteins in seminal plasma and sperm cells that can protect sperm cells from oxidative stress is crucial not only for a better understanding of the molecular mechanisms associated with male infertility but specially to guide new therapeutic possibilities. Antioxid. Redox Signal. 37, 501-520.


Assuntos
Astenozoospermia , Infertilidade Masculina , Antioxidantes/metabolismo , Astenozoospermia/metabolismo , Humanos , Infertilidade Masculina/metabolismo , Masculino , Estresse Oxidativo , Proteoma/metabolismo , Proteômica , Espécies Reativas de Oxigênio/metabolismo , Sêmen/química , Sêmen/metabolismo , Motilidade dos Espermatozoides , Espermatozoides/metabolismo
10.
Proteomes ; 9(1)2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33535467

RESUMO

Cardiovascular diseases (CVDs) are widely recognized as the leading cause of mortality worldwide. Despite the advances in clinical management over the past decades, the underlying pathological mechanisms remain largely unknown. Exosomes have drawn the attention of researchers for their relevance in intercellular communication under both physiological and pathological conditions. These vesicles are suggested as complementary prospective biomarkers of CVDs; however, the role of exosomes in CVDs is still not fully elucidated. Here, we performed a literature search on exosomal biogenesis, characteristics, and functions, as well as the different available exosomal isolation techniques. Moreover, aiming to give new insights into the interaction between exosomes and CVDs, network analysis on the role of exosome-derived mediators in coronary artery disease (CAD) and heart failure (HF) was also performed to incorporate the different sources of information. The upregulated exosomal miRNAs miR-133a, miR-208a, miR-1, miR-499-5p, and miR-30a were described for the early diagnosis of acute myocardial infarction, while the exosome-derived miR-192, miR-194, miR-146a, and miR-92b-5p were considered as potential biomarkers for HF development. In CAD patients, upregulated exosomal proteins, including fibrinogen beta/gamma chain, inter-alpha-trypsin inhibitor heavy chain, and alpha-1 antichymotrypsin, were assessed as putative protein biomarkers. From downregulated proteins in CAD patients, albumin, clusterin, and vitamin D-binding protein were considered relevant to assess prognosis. The Vesiclepedia database included miR-133a of exosomal origin upregulated in patients with CAD and the exosomal miR-192, miR-194, and miR-146a upregulated in patients with HF. Additionally, Vesiclepedia included 5 upregulated and 13 downregulated exosomal proteins in patients in CAD. The non-included miRNAs and proteins have not yet been identified in exosomes and can be proposed for further research. This report highlights the need for further studies focusing on the identification and validation of miRNAs and proteins of exosomal origin as biomarkers of CAD and HF, which will enable, using exosomal biomarkers, the guiding of diagnosis/prognosis in CVDs.

11.
J Mol Med (Berl) ; 98(4): 483-493, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32152705

RESUMO

Sexual dimorphism greatly influences adipose tissue remodeling, which is characterized by changes in the activity, number, and/or size of adipocytes in response to distinct stimuli, including lifestyle and anti-obesity drugs. This sex dependence seems to be due to the anatomical and endocrine disparities between men and women. At the molecular level, sex hormones are believed to mediate such differences and involve estrogen and androgen receptor-induced gene expression. The signaling pathways that regulate adipose tissue metabolism and function include peroxisome proliferator-activated receptor gamma, uncoupling protein 1 (UCP1), 5' adenosine monophosphate-activated protein kinase (AMPK), and mitochondrial oxidative phosphorylation (OXPHOS), among other molecular players. Sex hormone-related pathways also interplay with adrenergic signaling, probably the most well-characterized molecular mechanism implicated in the remodeling of white adipose tissue. This review overviews and integrates the signaling pathways behind sexual dimorphism in adipose tissue remodeling, hoping to increase the knowledge on the pathogenesis of diseases, such as obesity and related comorbidities, and consequently, to drive future studies to investigate the regulation of this tissue homeostasis, either in men or women.


Assuntos
Adipócitos/citologia , Adipócitos/metabolismo , Tecido Adiposo/anatomia & histologia , Tecido Adiposo/metabolismo , Adipócitos/efeitos dos fármacos , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo Marrom/anatomia & histologia , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/anatomia & histologia , Tecido Adiposo Branco/metabolismo , Adiposidade , Animais , Biomarcadores , Tamanho Celular , Gerenciamento Clínico , Suscetibilidade a Doenças , Feminino , Regulação da Expressão Gênica , Hormônios Esteroides Gonadais/metabolismo , Humanos , Masculino , Tamanho do Órgão , Caracteres Sexuais , Fatores Sexuais , Transdução de Sinais
12.
J Physiol Biochem ; 75(4): 561-572, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31620967

RESUMO

Aerobic exercise training induces a unique cardioprotective phenotype, but it is becoming clear that it does not promote the same structural, functional, and molecular adaptations in both ventricles. In the present study, we aimed to better characterize and compare the molecular pathways involved in the exercise-induced remodeling of both ventricles. Female Sprague-Dawley rats were randomly assigned to control and exercise groups. Animals in the exercise group were submitted to low-intensity treadmill exercise for 54 weeks. After the experimental period, biventricular hemodynamic analysis was performed and right and left ventricles were harvested for morphological and biochemical analyses. Data showed that long-term low-intensity exercise training improves cardiac function, especially left ventricular diastolic function; however, the expression of connexin-43, CCAAT-enhancer binding protein ß, and c-kit did not change in none of the ventricles. In the right ventricle, long-term exercise training induced an increase of manganese superoxide dismutase and sirtuin 3 protein expression, suggestive of improved antioxidant capacity. Our results also support that long-term aerobic exercise training imposes greater metabolic remodeling to the right ventricle, mainly by increasing mitochondrial ability to produce ATP, with no association to estrogen-related receptor α regulation.


Assuntos
Ventrículos do Coração/metabolismo , Miocárdio/metabolismo , Condicionamento Físico Animal/fisiologia , Função Ventricular Esquerda/fisiologia , Adaptação Fisiológica , Animais , Feminino , Hemodinâmica , Estresse Oxidativo/fisiologia , Ratos , Ratos Sprague-Dawley
13.
Methods Mol Biol ; 2044: 393-553, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31432428

RESUMO

Cerebrospinal fluid (CSF) is a source of valuable information concerning brain disorders. The technical advances of high-throughput omics platforms to analyze body fluids can generate a huge amount of data, whose translation to biological meaning is a challenge. Several bioinformatic tools have emerged to help handling this data into systems biology comprehensively. Herein, we describe a step-by-step tutorial for CSF proteome data analysis in the set of neurodegenerative diseases using (1) ClueGO+CluePedia tool to perform cluster-based analysis envisioning the characterization of the biological processes dysregulated in neurodegenerative diseases including Alzheimer's and Parkinson's diseases; (2) Cytoscape to map disease-specific proteins; (3) SecretomeP to inquire the secretion pathway of CSF proteins; and (4) STRING to identify biological processes modulated by secreted CSF proteins based on protein-protein interaction analysis. This step-by-step guide might help researchers to better characterize disease pathogenesis and to identify putative disease biomarkers.


Assuntos
Proteínas do Líquido Cefalorraquidiano/metabolismo , Doenças Neurodegenerativas/líquido cefalorraquidiano , Proteoma/análise , Software , Biomarcadores/líquido cefalorraquidiano , Proteínas do Líquido Cefalorraquidiano/genética , Biologia Computacional , Conjuntos de Dados como Assunto , Humanos , Doenças Neurodegenerativas/genética , Proteoma/genética , Proteoma/metabolismo
14.
Metabolism ; 87: 98-104, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30077622

RESUMO

Mammals respond to muscular exercise by increasing cardiac output to meet the increased demand for oxygen in the working muscles and it is well-established that regular bouts of exercise results in myocardial remodeling. Depending on exercise type, intensity and duration, these cardiac adaptations lead to changes in the energetic substrates required to sustain cardiac contractility. In contrast to the failing heart, fatty acids are the preferred substrate in the trained heart, though glucose metabolism is also enhanced to support oxidative phosphorylation. The participation of AMPK/eNOS and PPARα/PGC-1α pathways in the regulation of cardiac metabolism is well known but other players also contribute including sirtuins and integrins-mediated outside-in activation of FAK and other kinases. These regulatory players act by up-regulating fatty acid uptake, transport to mitochondria and oxidation, and glucose uptake via GLUT4. This exercise-induced increase in mitochondria metabolic flexibility is important to sustain the energetic demand associated with cardiomyocyte hypertrophy and hyperplasia promoted by IGF-1 and neuregulin-1-induced PI3K/Akt signaling. So, the timeless advice of Hippocrates "walking is the best medicine" seems to be justified by the promotion of mitochondrial health and, consequently, the beneficial metabolic remodeling of the heart.


Assuntos
Gorduras/metabolismo , Miocárdio/metabolismo , Condicionamento Físico Animal , Condicionamento Físico Humano , Açúcares/metabolismo , Animais , Exercício Físico/fisiologia , Humanos , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo , Transdução de Sinais/fisiologia
15.
Arch Biochem Biophys ; 645: 12-18, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29548774

RESUMO

Limiting cancer-induced cardiac damage has become an increasingly important issue to improve survival rates and quality of life. Exercise training has been shown to reduce cardiovascular complications in several diseases; however, its therapeutic role against cardiovascular consequences of cancer is in its infancy. In order to add new insights on the potential therapeutic effect of exercise training on cancer-related cardiac dysfunction, we used an animal model of urothelial carcinoma submitted to 13 weeks of treadmill exercise after 20 weeks of exposure to the carcinogenic N-butyl-N-(4-hydroxybutyl)-nitrosamine (BBN). Data showed that 13 weeks of treadmill exercise reverted cancer-induced cardiomyocytes atrophy and fibrosis, improved cardiac oxidative capacity given by citrate synthase activity and MnSOD content, and increased the levels of the mitochondrial biogenesis markers PGC-1α and mtTFA. Moreover, exercise training reverted cancer-induced decrease of cardiac c-kit levels suggesting enhanced regenerative ability of heart. These cardiac adaptations to exercise were related to a lower incidence of malignant urothelial lesions and less signs of inflammation. Taken together, data from the present study support the beneficial effect of exercise training when started after cancer diagnosis, envisioning the improvement of the cardiovascular function.


Assuntos
Remodelamento Atrial , Condicionamento Físico Animal , Neoplasias Urológicas/patologia , Animais , Modelos Animais de Doenças , Fibrose/prevenção & controle , Masculino , Atrofia Muscular/complicações , Atrofia Muscular/prevenção & controle , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Ratos , Ratos Wistar , Regeneração , Neoplasias Urológicas/metabolismo , Neoplasias Urológicas/fisiopatologia
16.
Respir Med ; 134: 70-78, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29413511

RESUMO

Pulmonary arterial hypertension (PAH) is a devastating disease characterized by progressive increases in pulmonary vascular resistance that can ultimately lead to right ventricle failure and death. Common symptoms include shortness of breath, fatigue, dizziness and chest pain, which negatively impact the functional capacity and quality of life. Despite the improvements in disease-targeted therapies, PAH remains incurable and with a high mortality rate, requiring effective therapeutic strategies. Exercise training is an important adjunct non-pharmacological treatment for patients with left heart failure and chronic obstructive pulmonary disease. Although exercise training was discouraged in PAH because of safety concerns, recent studies support that supervised exercise training is safe and beneficial in patients with stable PAH. However, the molecular mechanisms underlying these improvements are still poorly understood. This review summarizes and integrates the emerging clinical and experimental studies describing the molecular alterations related with exercise training in PAH.


Assuntos
Terapia por Exercício/métodos , Hipertensão Pulmonar/reabilitação , Adaptação Fisiológica/fisiologia , Animais , Biologia Computacional/métodos , Modelos Animais de Doenças , Humanos , Hipertensão Pulmonar/fisiopatologia , Pulmão/fisiopatologia , Músculo Esquelético/fisiopatologia , Ratos , Função Ventricular Direita/fisiologia
17.
Int J Mol Sci ; 20(1)2018 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-30602657

RESUMO

Cardiac dysfunction secondary to cancer may exert a negative impact in patients' tolerance to therapeutics, quality of life, and survival. The aim of this study was to evaluate the potential therapeutic effect of exercise training on the heart in the setting of cancer, after diagnosis. Thus, the molecular pathways harbored in heart mitochondria from a murine model of chemically-induced urothelial carcinoma submitted to 8-weeks of high intensity treadmill exercise were characterized using mass spectrometry-based proteomics. Data highlight the protective effects of high intensity exercise training in preventing left ventricle diastolic dysfunction, fibrosis, and structural derangement observed in tumor-bearing mice. At the mitochondrial level, exercise training counteracted the lower ability to produce ATP observed in the heart of animals with urothelial carcinoma and induced the up-regulation of fatty acid oxidation and down-regulation of the biological process "cardiac morphogenesis". Taken together, our data support the prescription of exercise training after cancer diagnosis for the management of disease-related cardiac dysfunction.


Assuntos
Carcinoma/complicações , Mitocôndrias Cardíacas/metabolismo , Condicionamento Físico Animal/métodos , Proteoma/metabolismo , Neoplasias da Bexiga Urinária/complicações , Disfunção Ventricular Esquerda/prevenção & controle , Animais , Masculino , Camundongos , Camundongos Endogâmicos ICR , Miócitos Cardíacos/metabolismo , Proteoma/genética , Disfunção Ventricular Esquerda/etiologia , Disfunção Ventricular Esquerda/metabolismo
19.
Porto Biomed J ; 2(6): 333-339, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-32258790

RESUMO

Cachexia affects the majority of patients with advanced cancer and no effective treatment is currently available to address this paraneoplastic syndrome. It is characterized by a reduction in body weight due to the loss of white adipose tissue (WAT) and skeletal muscle. The loss of WAT seems to occur at an earlier time point than skeletal muscle proteolysis, with recent evidence suggesting that the browning of WAT may be a major contributor to this process. Several factors seem to modulate WAT browning including pro-inflammatory cytokines; however, the underlying molecular pathways are poorly characterized. Exercise training is currently recommended for the clinical management of low-grade inflammatory conditions as cancer cachexia. While it seems to counterbalance the impairment of skeletal muscle function and attenuate the loss of muscle mass, little is known regarding its effects in adipose tissue. The browning of WAT is one of the mechanisms through which exercise improves body composition in overweight/obese individuals. While this effect is obviously advantageous in this clinical setting, it remains to be clarified if exercise training could protect or exacerbate the cachexia-related catabolic phenotype occurring in adipose tissue of cancer patients. Herein, we overview the molecular players involved in adipose tissue remodelling in cancer cachexia and in exercise training and hypothesize on the mechanisms modulated by the synergetic effect of these conditions. A better understanding of how physical activity regulates body composition will certainly help in the development of successful multimodal therapeutic strategies for the clinical management of cancer cachexia.

20.
Life Sci ; 169: 11-19, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-27888116

RESUMO

Cancer patients often show a wasting syndrome for which there are little therapeutic options. Dietary polyphenols have been proposed for treating this syndrome, but their usefulness in cases associated with human papillomavirus (HPV)-induced cancers is unknown. We characterized HPV16-transgenic mice as a model of cancer cachexia and tested the efficacy of long-term oral supplementation with polyphenols curcumin and rutin. Both compounds were orally administered to six weeks-old HPV16-transgenic mice showing characteristic multi-step skin carcinogenesis, for 24weeks. Skin lesions and blood, liver and spleen inflammatory changes were characterized histologically and hematologically. Hepatic oxidative stress, skeletal muscle mass and the levels of muscle pro-inflammatory transcription factor NF-κB were also assessed. Skin carcinogenesis was associated with progressive, severe, systemic inflammation (leukocytosis, hepatitis, splenitis), significant mortality and cachexia. Curcumin and rutin totally suppressed mortality while reducing white blood cells and the incidence of splenitis and hepatitis. Rutin prevented muscle wasting more effectively than curcumin. Preservation of muscle mass and reduced hepatic inflammation were associated with down-regulation of the NF-κB canonical pathway and with reduced oxidative stress, respectively. These results point out HPV16-transgenic mice as a useful model for studying the wasting syndrome associated with HPV-induced cancers. Dietary NF-κB inhibitors may be useful resources for treating this syndrome.


Assuntos
Anti-Inflamatórios não Esteroides/uso terapêutico , Caquexia/tratamento farmacológico , Curcumina/uso terapêutico , Papillomavirus Humano 16/imunologia , NF-kappa B/antagonistas & inibidores , Rutina/uso terapêutico , Neoplasias Cutâneas/tratamento farmacológico , Animais , Caquexia/complicações , Caquexia/patologia , Caquexia/virologia , Feminino , Humanos , Inflamação/complicações , Inflamação/tratamento farmacológico , Inflamação/patologia , Inflamação/virologia , Camundongos Transgênicos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Músculo Esquelético/virologia , NF-kappa B/imunologia , Pele/efeitos dos fármacos , Pele/patologia , Pele/virologia , Neoplasias Cutâneas/complicações , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/virologia , Síndrome de Emaciação/complicações , Síndrome de Emaciação/tratamento farmacológico , Síndrome de Emaciação/patologia , Síndrome de Emaciação/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA