Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomater Res ; 27(1): 82, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37644502

RESUMO

BACKGROUND: Human omentum-derived mesenchymal stem cells (hO-MSCs) possess great potential to differentiate into multiple lineages and have self-renewal capacity, allowing them to be utilized as patient-specific cell-based therapeutics. Although the use of various stem cell-derived ß-cells has been proposed as a novel approach for treating diabetes mellitus, developing an efficient method to establish highly functional ß-cells remains challenging. METHODS: We aimed to develop a novel cell culture platform that utilizes a fibroblast growth factor 2 (FGF2)-immobilized matrix to regulate the adhesion and differentiation of hO-MSCs into insulin-producing ß-cells via cell-matrix/cell-cell interactions. In our study, we evaluated the in vitro differentiation potential of hO-MSCs cultured on an FGF2-immobilized matrix and a round-bottom plate (RBP). Further, the in vivo therapeutic efficacy of the ß-cells transplanted into kidney capsules was evaluated using animal models with streptozotocin (STZ)-induced diabetes. RESULTS: Our findings demonstrated that cells cultured on an FGF2-immobilized matrix could self-organize into insulin-producing ß-cell progenitors, as evident from the upregulation of pancreatic ß-cell-specific markers (PDX-1, Insulin, and Glut-2). Moreover, we observed significant upregulation of heparan sulfate proteoglycan, gap junction proteins (Cx36 and Cx43), and cell adhesion molecules (E-cadherin and Ncam1) in cells cultured on the FGF2-immobilized matrix. In addition, in vivo transplantation of differentiated ß-cells into animal models of STZ-induced diabetes revealed their survival and engraftment as well as glucose-sensitive production of insulin within the host microenvironment, at over 4 weeks after transplantation. CONCLUSIONS: Our findings suggest that the FGF2-immobilized matrix can support initial cell adhesion, maturation, and glucose-stimulated insulin secretion within the host microenvironment. Such a cell culture platform can offer novel strategies to obtain functional pancreatic ß-cells from patient-specific cell sources, ultimately enabling better treatment for diabetes mellitus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA