Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 4(1): 674, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34083726

RESUMO

The terminal galactose residues of N- and O-glycans in animal glycoproteins are often sialylated and/or fucosylated, but sulfation, such as 3-O-sulfated galactose (3-O-SGal), represents an additional, but poorly understood modification. To this end, we have developed a novel sea lamprey variable lymphocyte receptor (VLR) termed O6 to explore 3-O-SGal expression. O6 was engineered as a recombinant murine IgG chimera and its specificity and affinity to the 3-O-SGal epitope was defined using a variety of approaches, including glycan and glycoprotein microarray analyses, isothermal calorimetry, ligand-bound crystal structure, FACS, and immunohistochemistry of human tissue macroarrays. 3-O-SGal is expressed on N-glycans of many plasma and tissue glycoproteins, but recognition by O6 is often masked by sialic acid and thus exposed by treatment with neuraminidase. O6 recognizes many human tissues, consistent with expression of the cognate sulfotransferases (GAL3ST-2 and GAL3ST-3). The availability of O6 for exploring 3-O-SGal expression could lead to new biomarkers for disease and aid in understanding the functional roles of terminal modifications of glycans and relationships between terminal sulfation, sialylation and fucosylation.


Assuntos
Epitopos/metabolismo , Galactose/análogos & derivados , Glicoproteínas/metabolismo , Lampreias/metabolismo , Polissacarídeos/metabolismo , Sequência de Aminoácidos , Animais , Células CHO , Cricetinae , Cricetulus , Fucose/metabolismo , Galactose/metabolismo , Glicoproteínas/química , Glicosilação , Células HEK293 , Humanos , Lampreias/imunologia , Ligantes , Espectrometria de Massas/métodos , Ácido N-Acetilneuramínico/metabolismo , Sulfatos/metabolismo , Sulfotransferases/química , Sulfotransferases/genética , Sulfotransferases/metabolismo
2.
Hum Vaccin Immunother ; 15(6): 1389-1400, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30252591

RESUMO

Background: Acute diarrheal disease caused by viral, bacterial and parasitic infections are a major global health problem with substantial mortality and morbidity in children under five years of age in lower and middle income countries. However, a number of these infections also impact large segments of populations in upper income countries, as well as individuals who travel overseas for work, business or pleasure. Campylobacter has been and continues to be a leading cause of disease burden globally across all income countries. Aims: The aim of this review is to describe recent understanding in burden of disease, consider the current landscape of Campylobacter vaccine development, and address the challenges that need to be overcome. Sources: Relevant data from the literature as well as clinical trials described in European and US registries were used to conduct this review. Content: Despite advances in population health, food security, improved sanitation, water quality and the reduction of poverty, Campylobacter infections continue to plague global populations. The emerging recognition of chronic health consequences attributed to this pathogen is changing the potential valuation of preventive interventions. Advancing development of new vaccines is a present opportunity and holds promise.


Assuntos
Vacinas Bacterianas/imunologia , Pesquisa Biomédica , Infecções por Campylobacter/prevenção & controle , Saúde Global , Animais , Campylobacter , Campylobacter jejuni/imunologia , Ensaios Clínicos como Assunto , Diarreia/prevenção & controle , Humanos , Camundongos , Viagem
3.
Biochem J ; 473(10): 1343-53, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-26976925

RESUMO

Human milk glycans (HMGs) are prebiotics, pathogen receptor decoys and regulators of host physiology and immune responses. Mechanistically, human lectins (glycan-binding proteins, hGBP) expressed by dendritic cells (DCs) are of major interest, as these cells directly contact HMGs. To explore such interactions, we screened many C-type lectins and sialic acid-binding immunoglobulin-like lectins (Siglecs) expressed by DCs for glycan binding on microarrays presenting over 200 HMGs. Unexpectedly, DC-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) showed robust binding to many HMGs, whereas other C-type lectins failed to bind, and Siglec-5 and Siglec-9 showed weak binding to a few glycans. By contrast, most hGBP bound to multiple glycans on other microarrays lacking HMGs. An α-linked fucose residue was characteristic of HMGs bound by DC-SIGN. Binding of DC-SIGN to the simple HMGs 2'-fucosyl-lactose (2'-FL) and 3-fucosyl-lactose (3-FL) was confirmed by flow cytometry to beads conjugated with 2'-FL or 3-FL, as well as the ability of the free glycans to inhibit DC-SIGN binding. 2'-FL had an IC50 of ∼1 mM for DC-SIGN, which is within the physiological concentration of 2'-FL in human milk. These results demonstrate that DC-SIGN among the many hGBP expressed by DCs binds to α-fucosylated HMGs, and suggest that such interactions may be important in influencing immune responses in the developing infant.


Assuntos
Moléculas de Adesão Celular/metabolismo , Lectinas Tipo C/metabolismo , Leite Humano/química , Polissacarídeos/metabolismo , Receptores de Superfície Celular/metabolismo , Células Dendríticas/metabolismo , Humanos , Análise Serial de Proteínas , Ligação Proteica , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Trissacarídeos/metabolismo
4.
Glycobiology ; 26(6): 655-69, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26747425

RESUMO

The biological recognition of human milk glycans (HMGs) is poorly understood. Because HMGs are rich in galactose we explored whether they might interact with human galectins, which bind galactose-containing glycans and are highly expressed in epithelial cells and other cell types. We screened a number of human galectins for their binding to HMGs on a shotgun glycan microarray consisting of 247 HMGs derived from human milk, as well as to a defined HMG microarray. Recombinant human galectins (hGal)-1, -3, -4, -7, -8 and -9 bound selectively to glycans, with each galectin recognizing a relatively unique binding motif; by contrast hGal-2 did not recognize HMGs, but did bind to the human blood group A Type 2 determinants on other microarrays. Unlike other galectins, hGal-7 preferentially bound to glycans expressing a terminal Type 1 (Galß1-3GlcNAc) sequence, a motif that had eluded detection on non-HMG glycan microarrays. Interactions with HMGs were confirmed in a solution setting by isothermal titration microcalorimetry and hapten inhibition experiments. These results demonstrate that galectins selectively bind to HMGs and suggest the possibility that galectin-HMG interactions may play a role in infant immunity.


Assuntos
Galectinas/química , Leite Humano/química , Polissacarídeos/química , Sítios de Ligação , Sequência de Carboidratos , Feminino , Galactose/química , Galectinas/biossíntese , Galectinas/isolamento & purificação , Humanos , Cinética , Análise em Microsséries , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação
5.
Nat Chem Biol ; 10(6): 470-6, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24814672

RESUMO

Genomic approaches continue to provide unprecedented insight into the microbiome, yet host immune interactions with diverse microbiota can be difficult to study. We therefore generated a microbial microarray containing defined antigens isolated from a broad range of microbial flora to examine adaptive and innate immunity. Serological studies with this microarray show that immunoglobulins from multiple mammalian species have unique patterns of reactivity, whereas exposure of animals to distinct microbes induces specific serological recognition. Although adaptive immunity exhibited plasticity toward microbial antigens, immunological tolerance limits reactivity toward self. We discovered that several innate immune galectins show specific recognition of microbes that express self-like antigens, leading to direct killing of a broad range of Gram-negative and Gram-positive microbes. Thus, host protection against microbes seems to represent a balance between adaptive and innate immunity to defend against evolving antigenic determinants while protecting against molecular mimicry.


Assuntos
Antígenos de Bactérias/imunologia , Galectinas/imunologia , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata , Análise em Microsséries/métodos , Polissacarídeos/imunologia , Imunidade Adaptativa , Animais , Antígenos de Bactérias/sangue , Antígenos de Bactérias/metabolismo , Sítios de Ligação , Células CHO , Sobrevivência Celular/imunologia , Cricetinae , Cricetulus , Fluorometria/métodos , Galectinas/sangue , Galectinas/metabolismo , Bactérias Gram-Negativas/imunologia , Bactérias Gram-Positivas/imunologia , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Imunoglobulina M/sangue , Imunoglobulina M/imunologia , Camundongos , Polissacarídeos/sangue , Polissacarídeos/metabolismo , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA