Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Genome Biol Evol ; 16(4)2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38620076

RESUMO

Most traits are polygenic, and the contributing loci can be identified by genome-wide association studies. The genetic basis of adaptation (adaptive architecture) is, however, difficult to characterize. Here, we propose to study the adaptive architecture of traits by monitoring the evolution of their phenotypic variance during adaptation to a new environment in well-defined laboratory conditions. Extensive computer simulations show that the evolution of phenotypic variance in a replicated experimental evolution setting can distinguish between oligogenic and polygenic adaptive architectures. We compared gene expression variance in male Drosophila simulans before and after 100 generations of adaptation to a novel hot environment. The variance change in gene expression was indistinguishable for genes with and without a significant change in mean expression after 100 generations of evolution. We suggest that the majority of adaptive gene expression evolution can be explained by a polygenic architecture. We propose that tracking the evolution of phenotypic variance across generations can provide an approach to characterize the adaptive architecture.


Assuntos
Herança Multifatorial , Fenótipo , Animais , Masculino , Adaptação Fisiológica/genética , Evolução Molecular , Drosophila simulans/genética , Drosophila/genética , Evolução Biológica , Simulação por Computador
2.
Evol Appl ; 16(10): 1671-1679, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38020870

RESUMO

Larval crowding is one common ecological stressor for many insect species. In Drosophila, high larval density alters multiple widely-studied phenotypes including life-history traits, morphology and behavior. Nevertheless, we still miss a holistic view of the full range of phenotypic changes and the underlying molecular mechanisms. In this study, we analyzed the adult transcriptomes of high and low larval density fly cohorts, and highlighted the molecular basis of the plastic traits. Increased cellular energy metabolism and locomotion, along with reduced reproductive investment, are key responses to high larval density. Moreover, we compared the expression changes among cohorts with different developmental delays caused by larval crowding. The majority of genes induced by larval crowding showed the strongest expression alterations in cohorts with intermediate delay. Furthermore, linear expression changes were observed in genes related to nutrition and detoxification. Comparing different high-density cohorts could provide insights into the varied responses to distinct larval crowding-induced stresses such as space competition, food degradation and waste accumulation.

3.
Nucleic Acids Res ; 51(17): 9203-9213, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37560917

RESUMO

It is widely accepted that the genomic distribution of transposable elements (TEs) mainly reflects the outcome of purifying selection and insertion bias (1). Nevertheless, the relative importance of these two evolutionary forces could not be tested thoroughly. Here, we introduce an experimental system, which allows separating purifying selection from TE insertion bias. We used experimental evolution to study the TE insertion patterns in Drosophila simulans founder populations harboring 1040 insertions of an active P-element. After 10 generations at a large population size, we detected strong selection against P-element insertions. The exception were P-element insertions in genomic regions for which a strong insertion bias has been proposed (2-4). Because recurrent P-element insertions cannot explain this pattern, we conclude that purifying selection, with variable strength along the chromosomes, is the major determinant of the genomic distribution of P-elements. Genomic regions with relaxed purifying selection against P-element insertions exhibit normal levels of purifying selection against base substitutions. This suggests that different types of purifying selection operate on base substitutions and P-element insertions. Our results highlight the power of experimental evolution to understand basic evolutionary processes, which are difficult to infer from patterns of natural variation alone.


Assuntos
Elementos de DNA Transponíveis , Evolução Molecular , Seleção Genética , Animais , Cromossomos , Elementos de DNA Transponíveis/genética , Genômica , Drosophila simulans/genética
4.
Evolution ; 77(9): 2081-2089, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37455661

RESUMO

The influence of pleiotropy on adaptive responses is a highly controversial topic, with limited empirical evidence available. Recognizing the pivotal role of the correlation of fitness effects, we designed an experiment to compare the adaptive gene expression evolution of natural and experimental populations. To test this, we studied the evolution of gene expression in response to temperature in two Drosophila species on a natural temperature cline in North America and replicated populations evolving in hot- and cold-temperature regimes. If fitness effects of affected traits are independent, pleiotropy is expected to constrain the adaptive response in both settings, laboratory and natural populations. However, when fitness effects are more correlated in natural populations, adaptation in the wild will be facilitated by pleiotropy. Remarkably, we find evidence for both predicted effects. In both settings, genes with strong pleiotropic effects contribute less to adaptation, indicating that the majority of fitness effects are not correlated. In addition, we discovered that genes involved in adaptation exhibited more pleiotropic effects in natural populations. We propose that this pattern can be explained by a stronger correlation of fitness effects in nature. More insights into the dual role of pleiotropy will be crucial for the understanding of polygenic adaptation.


Assuntos
Aclimatação , Adaptação Fisiológica , Animais , Temperatura , Adaptação Fisiológica/genética , Fenótipo , Drosophila/genética , Expressão Gênica
5.
Proc Biol Sci ; 289(1985): 20221857, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36259211

RESUMO

Experimental evolution combined with whole-genome sequencing (evolve and resequence (E&R)) is a powerful approach to study the adaptive architecture of selected traits. Nevertheless, so far the focus has been on the selective response triggered by a single stressor. Building on the highly parallel selection response of founder populations with reduced variation, we evaluated how the presence of a second stressor affects the genomic selection response. After 20 generations of adaptation to laboratory conditions at either 18°C or 29°C, strong genome-wide selection signatures were observed. Only 38% of the selection signatures can be attributed to laboratory adaptation (no difference between temperature regimes). The remaining selection responses are either caused by temperature-specific effects, or reflect the joint effects of temperature and laboratory adaptation (same direction, but the magnitude differs between temperatures). The allele frequency changes resulting from the combined effects of temperature and laboratory adaptation were more extreme in the hot environment for 83% of the affected genomic regions-indicating widespread synergistic effects of the two stressors. We conclude that E&R with reduced genetic variation is a powerful approach to study genome-wide fitness consequences driven by the combined effects of multiple environmental factors.


Assuntos
Drosophila melanogaster , Seleção Genética , Animais , Drosophila melanogaster/genética , Genoma , Frequência do Gene , Adaptação Fisiológica/genética
6.
Mol Biol Evol ; 39(7)2022 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-35731857

RESUMO

The popular trap model assumes that the invasions of transposable elements (TEs) in mammals and invertebrates are stopped by piRNAs that emerge after insertion of the TE into a piRNA cluster. It remains, however, still unclear which factors influence the dynamics of TE invasions. The activity of the TE (i.e., transposition rate) is one frequently discussed key factor. Here we take advantage of the temperature-dependent activity of the P-element, a widely studied eukaryotic TE, to test how TE activity affects the dynamics of a TE invasion. We monitored P-element invasion dynamics in experimental Drosophila simulans populations at hot and cold culture conditions. Despite marked differences in transposition rates, the P-element reached very similar copy numbers at both temperatures. The reduction of the insertion rate upon approaching the copy number plateau was accompanied by similar amounts of piRNAs against the P-element at both temperatures. Nevertheless, we also observed fewer P-element insertions in piRNA clusters than expected, which is not compatible with a simple trap model. The ping-pong cycle, which degrades TE transcripts, becomes typically active after the copy number plateaued. We generated a model, with few parameters, that largely captures the observed invasion dynamics. We conclude that the transposition rate has at the most only a minor influence on TE abundance, but other factors, such as paramutations or selection against TE insertions are shaping the TE composition.


Assuntos
Drosophila melanogaster , Evolução Molecular , Animais , Elementos de DNA Transponíveis/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Drosophila simulans/genética , Mamíferos/genética , RNA Interferente Pequeno/genética
7.
Genome Biol ; 23(1): 116, 2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35578368

RESUMO

BACKGROUND: Pleiotropy describes the phenomenon in which a gene affects multiple phenotypes. The extent of pleiotropy is still disputed, mainly because of issues of inadequate power of analyses. A further challenge is that empirical tests of pleiotropy are restricted to a small subset of all possible phenotypes. To overcome these limitations, we propose a new measurement of pleiotropy that integrates across many phenotypes and multiple generations to improve power. RESULTS: We infer pleiotropy from the fitness cost imposed by frequency changes of pleiotropic loci. Mixing Drosophila simulans populations, which adapted independently to the same new environment using different sets of genes, we show that the adaptive frequency changes have been accompanied by measurable fitness costs. CONCLUSIONS: Unlike previous studies characterizing the molecular basis of pleiotropy, we show that many loci, each of weak effect, contribute to genome-wide pleiotropy. We propose that the costs of pleiotropy are reduced by the modular architecture of gene expression, which facilitates adaptive gene expression changes with low impact on other functions.


Assuntos
Drosophila , Pleiotropia Genética , Adaptação Fisiológica/genética , Animais , Drosophila/genética , Fenótipo
8.
G3 (Bethesda) ; 12(3)2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35137042

RESUMO

The genetic basis of adaptation to different environments has been of long-standing interest to evolutionary biologists. Dormancy is a well-studied adaptation to facilitate overwintering. In Drosophila melanogaster, a moderate number of genes with large effects have been described, which suggests a simple genetic basis of dormancy. On the other hand, genome-wide scans for dormancy suggest a polygenic architecture in insects. In D. melanogaster, the analysis of the genetic architecture of dormancy is complicated by the presence of cosmopolitan inversions. Here, we performed a genome-wide scan to characterize the genetic basis of this ecologically extremely important trait in the sibling species of D. melanogaster, D. simulans that lacks cosmopolitan inversions. We performed Pool-GWAS in a South African D. simulans population for dormancy incidence at 2 temperature regimes (10 and 12°C, LD 10:14). We identified several genes with SNPs that showed a significant association with dormancy (P-value < 1e-13), but the overall modest response suggests that dormancy is a polygenic trait with many loci of small effect. Our results shed light on controversies on reproductive dormancy in Drosophila and have important implications for the characterization of the genetic basis of this trait.


Assuntos
Drosophila simulans , Herança Multifatorial , Animais , Drosophila simulans/genética , Estudo de Associação Genômica Ampla , Herança Multifatorial/genética
9.
Genome Biol Evol ; 13(11)2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34694407

RESUMO

Many adaptive traits are polygenic and frequently more loci contributing to the phenotype are segregating than needed to express the phenotypic optimum. Experimental evolution with replicated populations adapting to a new controlled environment provides a powerful approach to study polygenic adaptation. Because genetic redundancy often results in nonparallel selection responses among replicates, we propose a modified evolve and resequence (E&R) design that maximizes the similarity among replicates. Rather than starting from many founders, we only use two inbred Drosophila melanogaster strains and expose them to a very extreme, hot temperature environment (29 °C). After 20 generations, we detect many genomic regions with a strong, highly parallel selection response in 10 evolved replicates. The X chromosome has a more pronounced selection response than the autosomes, which may be attributed to dominance effects. Furthermore, we find that the median selection coefficient for all chromosomes is higher in our two-genotype experiment than in classic E&R studies. Because two random genomes harbor sufficient variation for adaptive responses, we propose that this approach is particularly well-suited for the analysis of polygenic adaptation.


Assuntos
Drosophila melanogaster , Genômica , Animais , Drosophila melanogaster/genética , Variação Genética , Genoma de Inseto , Herança Multifatorial , Seleção Genética
10.
Genome Biol ; 22(1): 211, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34271951

RESUMO

BACKGROUND: Understanding the genetic architecture of temperature adaptation is key for characterizing and predicting the effect of climate change on natural populations. One particularly promising approach is Evolve and Resequence, which combines advantages of experimental evolution such as time series, replicate populations, and controlled environmental conditions, with whole genome sequencing. Recent analysis of replicate populations from two different Drosophila simulans founder populations, which were adapting to the same novel hot environment, uncovered very different architectures-either many selection targets with large heterogeneity among replicates or fewer selection targets with a consistent response among replicates. RESULTS: Here, we expose the founder population from Portugal to a cold temperature regime. Although almost no selection targets are shared between the hot and cold selection regime, the adaptive architecture was similar. We identify a moderate number of targets under strong selection (19 selection targets, mean selection coefficient = 0.072) and parallel responses in the cold evolved replicates. This similarity across different environments indicates that the adaptive architecture depends more on the ancestry of the founder population than the specific selection regime. CONCLUSIONS: These observations will have broad implications for the correct interpretation of the genomic responses to a changing climate in natural populations.


Assuntos
Adaptação Fisiológica/genética , Drosophila simulans/genética , Genoma de Inseto , Genômica/métodos , Herança Multifatorial , Alelos , Animais , Temperatura Baixa , Feminino , Florida , Frequência do Gene , Genética Populacional , Sequenciamento de Nucleotídeos em Larga Escala , Temperatura Alta , Desequilíbrio de Ligação , Masculino , Portugal
11.
Mol Ecol ; 30(4): 884-894, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32979867

RESUMO

Ecological adaptation is frequently inferred by the comparison of natural populations from different environments. Nevertheless, inference of the selective forces suffers the challenge that many environmental factors covary. With well-controlled environmental conditions, experimental evolution provides a powerful approach to complement the analysis of natural populations. On the other hand, it is apparent that laboratory conditions differ in many ways from natural environments, which raises the question as to what extent selection responses in experimental evolution studies can inform us about adaptation processes in the wild. In this study, we compared the expression profiles of replicated Drosophila melanogaster populations which have been exposed to two distinct temperature regimes (18/28 and 10/20°C) in the laboratory for more than 80 generations. Using gene-wise differential expression analysis and co-expression network analysis, we identified 541 genes and three coregulated gene modules that evolved in the same direction in both temperature regimes, and most of these changes probably reflect an adaptation to the space constraint or diurnal temperature fluctuation that is common in both selection regimes. In total, 203 genes and seven modules evolved temperature-specific expression changes. Remarkably, we detected a significant overlap of these temperature-adaptive genes/modules from experimental evolution with temperature-adaptive genes inferred from natural Drosophila populations covering two different temperature clines. We conclude that well-designed experimental evolution studies are a powerful tool to dissect evolutionary responses.


Assuntos
Drosophila melanogaster , Laboratórios , Aclimatação , Adaptação Fisiológica/genética , Animais , Evolução Biológica , Drosophila melanogaster/genética , Expressão Gênica , Seleção Genética
12.
Genome Biol Evol ; 12(12): 2429-2440, 2020 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-33022043

RESUMO

Phenotypic plasticity is the ability of a single genotype to produce different phenotypes in response to environmental variation. The importance of phenotypic plasticity in natural populations and its contribution to phenotypic evolution during rapid environmental change is widely debated. Here, we show that thermal plasticity of gene expression in natural populations is a key component of its adaptation: evolution to novel thermal environments increases ancestral plasticity rather than mean genetic expression. We determined the evolution of plasticity in gene expression by conducting laboratory natural selection on a Drosophila simulans population in hot and cold environments. After more than 60 generations in the hot environment, 325 genes evolved a change in plasticity relative to the natural ancestral population. Plasticity increased in 75% of these genes, which were strongly enriched for several well-defined functional categories (e.g., chitin metabolism, glycolysis, and oxidative phosphorylation). Furthermore, we show that plasticity in gene expression of populations exposed to different temperatures is rather similar across species. We conclude that most of the ancestral plasticity can evolve further in more extreme environments.


Assuntos
Adaptação Fisiológica , Evolução Biológica , Drosophila simulans/genética , Regulação da Expressão Gênica , Resposta ao Choque Térmico , Animais , Feminino , Masculino
13.
BMC Biol ; 18(1): 157, 2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-33121485

RESUMO

BACKGROUND: Insect pest control programs often use periods of insecticide treatment with intermittent breaks, to prevent fixing of mutations conferring insecticide resistance. Such mutations are typically costly in an insecticide-free environment, and their frequency is determined by the balance between insecticide treatment and cost of resistance. Ace, a key gene in neuronal signaling, is a prominent target of many insecticides and across several species, three amino acid replacements (I161V, G265A, and F330Y) provide resistance against several insecticides. Because temperature disturbs neuronal signaling homeostasis, we reasoned that the cost of insecticide resistance could be modulated by ambient temperature. RESULTS: Experimental evolution of a natural Drosophila simulans population at hot and cold temperature regimes uncovered a surprisingly strong effect of ambient temperature. In the cold temperature regime, the resistance mutations were strongly counter selected (s = - 0.055), but in a hot environment, the fitness costs of resistance mutations were reduced by almost 50% (s = - 0.031). We attribute this unexpected observation to the advantage of the reduced enzymatic activity of resistance mutations in hot environments. CONCLUSION: We show that fitness costs of insecticide resistance genes are temperature-dependent and suggest that the duration of insecticide-free periods need to be adjusted for different climatic regions to reflect these costs. We suggest that such environment-dependent fitness effects may be more common than previously assumed and pose a major challenge for modeling climate change.


Assuntos
Drosophila melanogaster/genética , Aptidão Genética , Resistência a Inseticidas/genética , Mutação , Temperatura , Animais , Drosophila melanogaster/efeitos dos fármacos , Inseticidas/farmacologia
14.
Front Genet ; 11: 482, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32477411

RESUMO

Climate change is a major evolutionary force triggering thermal adaptation in a broad range of species. While the consequences of global warming are being studied for an increasing number of species, limited attention has been given to the evolutionary dynamics of endosymbionts in response to climate change. Here, we address this question by studying the dynamics of Wolbachia, a well-studied endosymbiont of Drosophila melanogaster. D. melanogaster populations infected with 13 different Wolbachia strains were exposed to novel hot and cold laboratory environments for up to 180 generations. The short-term dynamics suggested a temperature-related fitness difference resulting in the increase of clade V strains in the cold environment only. Our long-term analysis now uncovers that clade V dominates in all replicates after generation 60 irrespective of temperature treatment. We propose that adaptation of the Drosophila host to either temperature or Drosophila C virus (DCV) infection are the cause of the replicated, temporally non-concordant Wolbachia dynamics. Our study provides an interesting case demonstrating that even simple, well-controlled experiments can result in complex, but repeatable evolutionary dynamics, thus providing a cautionary note on too simple interpretations on the impact of climate change.

15.
Mol Biol Evol ; 37(9): 2630-2640, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32402077

RESUMO

Neuronal activity is temperature sensitive and affects behavioral traits important for individual fitness, such as locomotion and courtship. Yet, we do not know enough about the evolutionary response of neuronal phenotypes in new temperature environments. Here, we use long-term experimental evolution of Drosophila simulans populations exposed to novel temperature regimes. Here, we demonstrate a direct relationship between thermal selective pressure and the evolution of neuronally expressed molecular and behavioral phenotypes. Several essential neuronal genes evolve lower expression at high temperatures and higher expression at low temperatures, with dopaminergic neurons standing out by displaying the most consistent expression change across independent replicates. We functionally validate the link between evolved gene expression and behavioral changes by pharmacological intervention in the experimentally evolved D. simulans populations as well as by genetically triggered expression changes of key genes in D. melanogaster. As natural temperature clines confirm our results for Drosophila and Anopheles populations, we conclude that neuronal dopamine evolution is a key factor for temperature adaptation.


Assuntos
Aclimatação/genética , Evolução Biológica , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Drosophila/metabolismo , Animais , Dopamina/genética , Drosophila/genética , Locomoção/genética , Masculino , Fenótipo
16.
Genome Biol Evol ; 12(3): 151-159, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32159748

RESUMO

Evolve and resequencing (E&R) studies investigate the genomic responses of adaptation during experimental evolution. Because replicate populations evolve in the same controlled environment, consistent responses to selection across replicates are frequently used to identify reliable candidate regions that underlie adaptation to a new environment. However, recent work demonstrated that selection signatures can be restricted to one or a few replicate(s) only. These selection signatures frequently have weak statistical support, and given the difficulties of functional validation, additional evidence is needed before considering them as candidates for functional analysis. Here, we introduce an experimental procedure to validate candidate loci with weak or replicate-specific selection signature(s). Crossing an evolved population from a primary E&R experiment to the ancestral founder population reduces the frequency of candidate alleles that have reached a high frequency. We hypothesize that genuine selection targets will experience a repeatable frequency increase after the mixing with the ancestral founders if they are exposed to the same environment (secondary E&R experiment). Using this approach, we successfully validate two overlapping selection targets, which showed a mutually exclusive selection signature in a primary E&R experiment of Drosophila simulans adapting to a novel temperature regime. We conclude that secondary E&R experiments provide a reliable confirmation of selection signatures that either are not replicated or show only a low statistical significance in a primary E&R experiment unless epistatic interactions predominate. Such experiments are particularly helpful to prioritize candidate loci for time-consuming functional follow-up investigations.


Assuntos
Evolução Molecular , Seleção Genética , Animais , Drosophila simulans/genética , Feminino , Genômica , Temperatura Alta , Fenótipo , Polimorfismo de Nucleotídeo Único
17.
Elife ; 92020 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-32083552

RESUMO

The pervasive occurrence of sexual dimorphism demonstrates different adaptive strategies of males and females. While different reproductive strategies of the two sexes are well-characterized, very little is known about differential functional requirements of males and females in their natural habitats. Here, we study the impact environmental change on the selection response in both sexes. Exposing replicated Drosophila populations to a novel temperature regime, we demonstrate sex-specific changes in gene expression, metabolic and behavioral phenotypes in less than 100 generations. This indicates not only different functional requirements of both sexes in the new environment but also rapid sex-specific adaptation. Supported by computer simulations we propose that altered sex-biased gene regulation from standing genetic variation, rather than new mutations, is the driver of rapid sex-specific adaptation. Our discovery of environmentally driven divergent functional requirements of males and females has important implications-possibly even for gender aware medical treatments.


Male and female animals of the same species sometimes differ in appearance and sexual behavior, a phenomenon known as sexual dimorphism. Both sexes share most of the same genes, but differences can emerge because of the way these are read by cells to create proteins ­ a process called gene expression. For instance, certain genes can be more expressed in males than in females, and vice-versa. Most studies into the emergence of sexual dimorphism have taken place in stable environments with few changes in climate or other factors. Therefore, the potential impact of environmental changes on sexual dimorphism has been largely overlooked. Here, Hsu et al. used genetic and computational approaches to investigate whether male and female fruit flies adapt differently to a new, hotter environment over several generations. The experiment showed that, after only 100 generations, the way that 60% of all genes were expressed evolved in a different direction in the two sexes. This led to differences in how the males and females made and broke down fat molecules, and in how their neurons operated. These expression changes also translated in differences for high-level biological processes. For instance, animals in the new settings ended up behaving differently, with the males at the end of the experiment spending more time chasing females than the ancestral flies. These findings demonstrate that male and female fruit flies adapt many biological processes (including metabolism and behaviors) differently to cope with changes in their environment, and that many different genes support these sex-specific adaptations. Ultimately, the work by Hsu et al. may inform medical strategies that take into account interactions between the patient's sex and their environment.


Assuntos
Adaptação Fisiológica/fisiologia , Drosophila melanogaster/fisiologia , Adaptação Fisiológica/genética , Animais , Feminino , Regulação da Expressão Gênica/fisiologia , Genes/fisiologia , Temperatura Alta , Masculino , Fatores Sexuais
18.
Genome Biol Evol ; 11(4): 1345-1357, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30980655

RESUMO

Meiotic recombination is crucial for chromosomal segregation and facilitates the spread of beneficial and removal of deleterious mutations. Recombination rates frequently vary along chromosomes and Drosophila melanogaster exhibits a remarkable pattern. Recombination rates gradually decrease toward centromeres and telomeres, with a dramatic impact on levels of variation in natural populations. Two close sister species, Drosophila simulans and Drosophila mauritiana do not only have higher recombination rates but also exhibit a much more homogeneous recombination rate that only drops sharply very close to centromeres and telomeres. Because certain sequence motifs are associated with recombination rate variation in D. melanogaster, we tested whether the difference in recombination landscape between D. melanogaster and D. simulans can be explained by the genomic distribution of recombination rate-associated sequence motifs. We constructed the first high-resolution recombination map for D. simulans based on 189 haplotypes from a natural D. simulans population and searched for short sequence motifs linked with higher than average recombination in both sister species. We identified five consensus motifs significantly associated with higher than average chromosome-wide recombination rates in at least one species and present in both. Testing fine resolution associations between motif density and recombination, we found strong and positive associations genome-wide over a range of scales in D. melanogaster, while the results were equivocal in D. simulans. Despite the strong association in D. melanogaster, we did not find a decreasing density of these short-repeat motifs toward centromeres and telomeres. We conclude that the density of recombination-associated repeat motifs cannot explain the large-scale recombination landscape in D. melanogaster, nor the differences to D. simulans. The strong association seen for the sequence motifs in D. melanogaster likely reflects their impact influencing local differences in recombination rates along the genome.


Assuntos
Drosophila melanogaster/genética , Drosophila simulans/genética , Motivos de Nucleotídeos , Recombinação Genética , Animais , Cromossomos de Insetos , Feminino , Masculino
19.
PLoS Biol ; 17(2): e3000128, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30716062

RESUMO

The genetic architecture of adaptive traits is of key importance to predict evolutionary responses. Most adaptive traits are polygenic-i.e., result from selection on a large number of genetic loci-but most molecularly characterized traits have a simple genetic basis. This discrepancy is best explained by the difficulty in detecting small allele frequency changes (AFCs) across many contributing loci. To resolve this, we use laboratory natural selection to detect signatures for selective sweeps and polygenic adaptation. We exposed 10 replicates of a Drosophila simulans population to a new temperature regime and uncovered a polygenic architecture of an adaptive trait with high genetic redundancy among beneficial alleles. We observed convergent responses for several phenotypes-e.g., fitness, metabolic rate, and fat content-and a strong polygenic response (99 selected alleles; mean s = 0.059). However, each of these selected alleles increased in frequency only in a subset of the evolving replicates. We discerned different evolutionary paradigms based on the heterogeneous genomic patterns among replicates. Redundancy and quantitative trait (QT) paradigms fitted the experimental data better than simulations assuming independent selective sweeps. Our results show that natural D. simulans populations harbor a vast reservoir of adaptive variation facilitating rapid evolutionary responses using multiple alternative genetic pathways converging at a new phenotypic optimum. This key property of beneficial alleles requires the modification of testing strategies in natural populations beyond the search for convergence on the molecular level.


Assuntos
Adaptação Fisiológica/genética , Drosophila simulans/genética , Drosophila simulans/fisiologia , Herança Multifatorial/genética , Alelos , Animais , Evolução Biológica , Aptidão Genética , Heterogeneidade Genética , Genoma de Inseto , Haplótipos/genética , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética
20.
Genes (Basel) ; 10(2)2019 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-30696109

RESUMO

Gene expression profiling is one of the most reliable high-throughput phenotyping methods, allowing researchers to quantify the transcript abundance of expressed genes. Because many biotic and abiotic factors influence gene expression, it is recommended to control them as tightly as possible. Here, we show that a 24 h age difference of Drosophilasimulans females that were subjected to RNA sequencing (RNA-Seq) five and six days after eclosure resulted in more than 2000 differentially expressed genes. This is twice the number of genes that changed expression during 100 generations of evolution in a novel hot laboratory environment. Importantly, most of the genes differing in expression due to age introduce false positives or negatives if an adaptive gene expression analysis is not controlled for age. Our results indicate that tightly controlled experimental conditions, including precise developmental staging, are needed for reliable gene expression analyses, in particular in an evolutionary framework.


Assuntos
Envelhecimento/genética , Evolução Molecular , Termotolerância/genética , Transcriptoma , Animais , Drosophila , Feminino , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA