Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Nat Commun ; 15(1): 3762, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704378

RESUMO

Plants initiate specific defense responses by recognizing conserved epitope peptides within the flagellin proteins derived from bacteria. Proteolytic cleavage of epitope peptides from flagellin by plant apoplastic proteases is thought to be crucial for the perception of the epitope by the plant receptor. However, the identity of the plant proteases involved in this process remains unknown. Here, we establish an efficient identification system for the target proteases in Arabidopsis apoplastic fluid; the method employs native two-dimensional electrophoresis followed by an in-gel proteolytic assay using a fluorescence-quenching peptide substrate. We designed a substrate to specifically detect proteolytic activity at the C-terminus of the flg22 epitope in flagellin and identified two plant subtilases, SBT5.2 and SBT1.7, as specific proteases responsible for the C-terminal cleavage of flg22. In the apoplastic fluid of Arabidopsis mutant plants deficient in these two proteases, we observe a decrease in the C-terminal cleavage of the flg22 domain from flagellin, leading to a decrease in the efficiency of flg22 epitope liberation. Consequently, defensive reactive oxygen species (ROS) production is delayed in sbt5.2 sbt1.7 double-mutant leaf disks compared to wild type following flagellin exposure.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Epitopos , Flagelina , Espécies Reativas de Oxigênio , Flagelina/metabolismo , Flagelina/imunologia , Arabidopsis/imunologia , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/imunologia , Epitopos/imunologia , Epitopos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Subtilisinas/metabolismo , Subtilisinas/genética , Proteólise , Mutação
2.
bioRxiv ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38746097

RESUMO

Seasonal changes in spring induce flowering by expressing the florigen, FLOWERING LOCUS T (FT), in Arabidopsis. FT is expressed in unique phloem companion cells with unknown characteristics. The question of which genes are co-expressed with FT and whether they have roles in flowering remains elusive. Through tissue-specific translatome analysis, we discovered that under long-day conditions with the natural sunlight red/far-red ratio, the FT-producing cells express a gene encoding FPF1-LIKE PROTEIN 1 (FLP1). The master FT regulator, CONSTANS (CO), controls FLP1 expression, suggesting FLP1's involvement in the photoperiod pathway. FLP1 promotes early flowering independently of FT, is active in the shoot apical meristem, and induces the expression of SEPALLATA 3 (SEP3), a key E-class homeotic gene. Unlike FT, FLP1 facilitates inflorescence stem elongation. Our cumulative evidence indicates that FLP1 may act as a mobile signal. Thus, FLP1 orchestrates floral initiation together with FT and promotes inflorescence stem elongation during reproductive transitions.

3.
Plants (Basel) ; 12(20)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37896084

RESUMO

Arabidopsis ASYMMETRIC LEAVES2 (AS2) plays a key role in the formation of flat symmetric leaves. AS2 represses the expression of the abaxial gene ETTIN/AUXIN RESPONSE FACTOR3 (ETT/ARF3). AS2 interacts in vitro with the CGCCGC sequence in ETT/ARF3 exon 1. In cells of leaf primordia, AS2 localizes at peripheral regions of the nucleolus as two AS2 bodies, which are partially overlapped with chromocenters that contain condensed 45S ribosomal DNA repeats. AS2 contains the AS2/LOB domain, which consists of three sequences conserved in the AS2/LOB family: the zinc finger (ZF) motif, the ICG sequence including the conserved glycine residue, and the LZL motif. AS2 and the genes NUCLEOLIN1 (NUC1), RNA HELICASE10 (RH10), and ROOT INITIATION DEFECTIVE2 (RID2) that encode nucleolar proteins coordinately act as repressors against the expression of ETT/ARF3. Here, we examined the formation and patterning of AS2 bodies made from as2 mutants with amino acid substitutions in the ZF motif and the ICG sequence in cells of cotyledons and leaf primordia. Our results showed that the amino acid residues next to the cysteine residues in the ZF motif were essential for both the formation of AS2 bodies and the interaction with ETT/ARF3 DNA. The conserved glycine residue in the ICG sequence was required for the formation of AS2 bodies, but not for the DNA interaction. We also examined the effects of nuc1, rh10, and rid2 mutations, which alter the metabolism of rRNA intermediates and the morphology of the nucleolus, and showed that more than two AS2 bodies were observed in the nucleolus and at its periphery. These results suggested that the patterning of AS2 bodies is tightly linked to the morphology and functions of the nucleolus and the development of flat symmetric leaves in plants.

4.
Nat Commun ; 14(1): 2665, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37188667

RESUMO

Stomatal pores in the plant epidermis open and close to regulate gas exchange between leaves and the atmosphere. Upon light stimulation, the plasma membrane (PM) H+-ATPase is phosphorylated and activated via an intracellular signal transduction pathway in stomatal guard cells, providing a primary driving force for the opening movement. To uncover and manipulate this stomatal opening pathway, we screened a chemical library and identified benzyl isothiocyanate (BITC), a Brassicales-specific metabolite, as a potent stomatal-opening inhibitor that suppresses PM H+-ATPase phosphorylation. We further developed BITC derivatives with multiple isothiocyanate groups (multi-ITCs), which demonstrate inhibitory activity on stomatal opening up to 66 times stronger, as well as a longer duration of the effect and negligible toxicity. The multi-ITC treatment inhibits plant leaf wilting in both short (1.5 h) and long-term (24 h) periods. Our research elucidates the biological function of BITC and its use as an agrochemical that confers drought tolerance on plants by suppressing stomatal opening.


Assuntos
Proteínas de Arabidopsis , Estômatos de Plantas , Estômatos de Plantas/metabolismo , Luz , Resistência à Seca , ATPases Translocadoras de Prótons/metabolismo , Isotiocianatos/farmacologia , Isotiocianatos/metabolismo , Proteínas de Arabidopsis/metabolismo
5.
Front Plant Sci ; 14: 1099587, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36968385

RESUMO

Plants retain the ability to generate a pluripotent tissue called callus by dedifferentiating somatic cells. A pluripotent callus can also be artificially induced by culturing explants with hormone mixtures of auxin and cytokinin, and an entire body can then be regenerated from the callus. Here we identified a pluripotency-inducing small compound, PLU, that induces the formation of callus with tissue regeneration potency without the external application of either auxin or cytokinin. The PLU-induced callus expressed several marker genes related to pluripotency acquisition via lateral root initiation processes. PLU-induced callus formation required activation of the auxin signaling pathway though the amount of active auxin was reduced by PLU treatment. RNA-seq analysis and subsequent experiments revealed that Heat Shock Protein 90 (HSP90) mediates a significant part of the PLU-initiated early events. We also showed that HSP90-dependent induction of TRANSPORT INHIBITOR RESPONSE 1, an auxin receptor gene, is required for the callus formation by PLU. Collectively, this study provides a new tool for manipulating and investigating the induction of plant pluripotency from a different angle from the conventional method with the external application of hormone mixtures.

6.
Sci Adv ; 8(42): eabn4466, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36269824

RESUMO

The ubiquitin-proteasome system is vital to hormone-mediated developmental and stress responses in plants. Ubiquitin ligases target hormone-specific transcriptional activators (TAs) for degradation, but how TAs are processed by proteasomes remains unknown. We report that in Arabidopsis, the salicylic acid- and ethylene-responsive TAs, NPR1 and EIN3, are relayed from pathway-specific ubiquitin ligases to proteasome-associated HECT-type UPL3/4 ligases. Activity and stability of NPR1 were regulated by sequential action of three ubiquitin ligases, including UPL3/4, while proteasome processing of EIN3 required physical handover between ethylene-responsive SCFEBF2 and UPL3/4 ligases. Consequently, UPL3/4 controlled extensive hormone-induced developmental and stress-responsive transcriptional programs. Thus, our findings identify unknown ubiquitin ligase relays that terminate with proteasome-associated HECT-type ligases, which may be a universal mechanism for processive degradation of proteasome-targeted TAs and other substrates.

7.
Nat Commun ; 13(1): 1216, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35260555

RESUMO

Perception of pathogen-derived ligands by corresponding host receptors is a pivotal strategy in eukaryotic innate immunity. In plants, this is complemented by circadian anticipation of infection timing, promoting basal resistance even in the absence of pathogen threat. Here, we report that trichomes, hair-like structures on the epidermis, directly sense external mechanical forces, including raindrops, to anticipate pathogen infections in Arabidopsis thaliana. Exposure of leaf surfaces to mechanical stimuli initiates the concentric propagation of intercellular calcium waves away from trichomes to induce defence-related genes. Propagating calcium waves enable effective immunity against pathogenic microbes through the CALMODULIN-BINDING TRANSCRIPTION ACTIVATOR 3 (CAMTA3) and mitogen-activated protein kinases. We propose an early layer of plant immunity in which trichomes function as mechanosensory cells that detect potential risks.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Imunidade Vegetal/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Tricomas/fisiologia
8.
Plant Cell Physiol ; 63(3): 369-383, 2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35016226

RESUMO

Cleavage and polyadenylation at the 3' end of the pre-mRNA is essential for mRNA function, by regulating its translatability, stability and translocation to the cytoplasm. Cleavage factor I (CFI) is a multi-subunit component of the pre-mRNA 3' end processing machinery in eukaryotes. Here, we report that plant CFI 25 subunit of CFI plays an important role in maintaining the diversity of the 3' ends of mRNA. The genome of Arabidopsis thaliana (L.) Heynh. contained four genes encoding three putative CFI subunits (AtCFI 25, AtCFI 59 and AtCFI 68), orthologous to the mammalian CFI subunits. There were two CFI 25 paralogs (AtCFI 25a and AtCFI 25b) that shared homology with human CFI 25. Two null alleles of AtCFI 25a displayed smaller rosette leaves, longer stigmatic papilla, smaller anther, earlier flowering and lower fertility compared to wild-type plants. Null alleles of AtCFI 25b, as well as, plants ectopically expressing full-length cDNA of AtCFI 25a, displayed no obvious morphological defects. AtCFI 25a was shown to interact with AtCFI 25b, AtCFI 68 and itself, suggesting various forms of CFI in plants. Furthermore, we show that AtCFI 25a function was essential for maintaining proper diversity of the 3' end lengths of transcripts coding for CFI subunits, suggesting a self-regulation of the CFI machinery in plants. AtCFI 25a was also important to maintain 3' ends for other genes to different extent. Collectively, AtCFI 25a, but not AtCFI 25b, seemed to play important roles during Arabidopsis development by maintaining proper diversity of the 3' UTR lengths.


Assuntos
Arabidopsis , Animais , Regiões 3' não Traduzidas/genética , Arabidopsis/genética , Fibrinogênio , Poliadenilação/genética
9.
Cell Rep ; 37(11): 110125, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34910911

RESUMO

Plants tailor immune responses to defend against pathogens with different lifestyles. In this process, antagonism between the immune hormones salicylic acid (SA) and jasmonic acid (JA) optimizes transcriptional signatures specifically to the attacker encountered. Antagonism is controlled by the transcription cofactor NPR1. The indispensable role of NPR1 in activating SA-responsive genes is well understood, but how it functions as a repressor of JA-responsive genes remains unclear. Here, we demonstrate that SA-induced NPR1 is recruited to JA-responsive promoter regions that are co-occupied by a JA-induced transcription complex consisting of the MYC2 activator and MED25 Mediator subunit. In the presence of SA, NPR1 physically associates with JA-induced MYC2 and inhibits transcriptional activation by disrupting its interaction with MED25. Importantly, NPR1-mediated inhibition of MYC2 is a major immune mechanism for suppressing pathogen virulence. Thus, NPR1 orchestrates the immune transcriptome not only by activating SA-responsive genes but also by acting as a corepressor of JA-responsive MYC2.


Assuntos
Aminoácidos/toxicidade , Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Indenos/toxicidade , Doenças das Plantas/imunologia , Imunidade Vegetal , Proteínas Proto-Oncogênicas c-myc/antagonistas & inibidores , Anti-Infecciosos , Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas Correpressoras , Ciclopentanos/farmacologia , Oxilipinas/farmacologia , Doenças das Plantas/microbiologia , Reguladores de Crescimento de Plantas/farmacologia , Pseudomonas syringae/química , Ácido Salicílico/farmacologia , Transdução de Sinais
10.
Radiol Case Rep ; 16(12): 3945-3949, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34712374

RESUMO

Organized hematoma (OH) is benign tumor in the maxillary sinus. The standard treatment for OH is complete surgical resection, however massive bleeding can occur during the procedure, albeit rarely. Some reports have suggested preoperative embolization is useful for reducing the volume of intraoperative bleeding. We report 3 cases of OH in the maxillary performed preoperative embolization. We identified the feeding arteries by angiography or IVR-CT, and we embolized them using Gelatin sponge particles. The embolized artery was the maxillary artery or both the maxillary and the facial artery. There were no major complications as a result of embolization. The mean fluoroscopy time was 35.8 minutes, and the mean fluoroscopy dose was 329.3 mGy. Tumor resection was performed the next day after arterial embolization. The mean bleeding volume for surgery was 383.3 ml, and the mean operative time was 194 minutes. No recurrence was observed in any of the cases over a 4-year follow-up period. We considered that it is possible that preoperative artery embolization is useful for decreasing intraoperative bleeding volume. Although the methods and usefulness of embolization await future reports, it is a technique that should be considered preoperatively because of its potential to prevent massive bleeding.

11.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34282011

RESUMO

The phytohormone abscisic acid (ABA) plays a major role in abiotic stress responses in plants, and subclass III SNF1-related protein kinase 2 (SnRK2) kinases mediate ABA signaling. In this study, we identified Raf36, a group C Raf-like protein kinase in Arabidopsis, as a protein that interacts with multiple SnRK2s. A series of reverse genetic and biochemical analyses revealed that 1) Raf36 negatively regulates ABA responses during postgermination growth, 2) the N terminus of Raf36 is directly phosphorylated by SnRK2s, and 3) Raf36 degradation is enhanced in response to ABA. In addition, Raf22, another C-type Raf-like kinase, functions partially redundantly with Raf36 to regulate ABA responses. A comparative phosphoproteomic analysis of ABA-induced responses of wild-type and raf22raf36-1 plants identified proteins that are phosphorylated downstream of Raf36 and Raf22 in planta. Together, these results support a model in which Raf36/Raf22 function mainly under optimal conditions to suppress ABA responses, whereas in response to ABA, the SnRK2 module promotes Raf36 degradation as a means of alleviating Raf36-dependent inhibition and allowing for heightened ABA signaling to occur.


Assuntos
Ácido Abscísico/farmacologia , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Estresse Fisiológico , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Fosforilação , Reguladores de Crescimento de Plantas/farmacologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais
12.
Plant Cell ; 33(7): 2340-2359, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-33826745

RESUMO

Leguminous plants produce nodules for nitrogen fixation; however, nodule production incurs an energy cost. Therefore, as an adaptive strategy, leguminous plants halt root nodule development when sufficient amounts of nitrogen nutrients, such as nitrate, are present in the environment. Although legume NODULE INCEPTION (NIN)-LIKE PROTEIN (NLP) transcription factors have recently been identified, understanding how nodulation is controlled by nitrate, a fundamental question for nitrate-mediated transcriptional regulation of symbiotic genes, remains elusive. Here, we show that two Lotus japonicus NLPs, NITRATE UNRESPONSIVE SYMBIOSIS 1 (NRSYM1)/LjNLP4 and NRSYM2/LjNLP1, have overlapping functions in the nitrate-induced control of nodulation and act as master regulators for nitrate-dependent gene expression. We further identify candidate target genes of LjNLP4 by combining transcriptome analysis with a DNA affinity purification-seq approach. We then demonstrate that LjNLP4 and LjNIN, a key nodulation-specific regulator and paralog of LjNLP4, have different DNA-binding specificities. Moreover, LjNLP4-LjNIN dimerization underlies LjNLP4-mediated bifunctional transcriptional regulation. These data provide a basic principle for how nitrate controls nodulation through positive and negative regulation of symbiotic genes.


Assuntos
Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas , Lotus/genética , Lotus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nodulação/genética , Nodulação/fisiologia , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/metabolismo , Simbiose/genética , Simbiose/fisiologia , Fatores de Transcrição/genética
13.
Acta Otolaryngol ; 141(4): 403-407, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33512264

RESUMO

BACKGROUND: Cricotracheostomy, a modified procedure to open the airway with partial cricoid cartilage resection, was recently reported to be useful in selected cases. AIMS/OBJECTIVES: To examine decannulation outcomes in patients who underwent cricotracheostomy by comparing it with a conventional tracheostomy. MATERIALS AND METHODS: Data from 127 consecutive adult patients, who underwent either conventional tracheostomy or cricotracheostomy between 2016 and 2019, were collected and analyzed with respect to subsequent decannulation with stoma closure. RESULTS: Conventional tracheostomy and cricotracheostomy were performed in 94 and 33 patients, respectively. The most frequent reason for choosing cricotracheostomy was a physiological low-lying larynx (n = 12). After excluding 30 patients who were considered ineligible due to their primary disease, subsequent decannulation with stoma closure was achieved in 35 (46%) of 76 cases with conventional tracheostomy and seven (33%) of 21 cases with cricotracheostomy, showing no significant difference (p = .33). CONCLUSIONS/SIGNIFICANCE: Compared with a conventional tracheostomy, cricotracheostomy had an acceptable decannulation outcome. However, it should be emphasized that an appropriate selection of patients is required on considering the advantages of cricotracheostomy.


Assuntos
Extubação , Cartilagem Cricoide/cirurgia , Traqueostomia/métodos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Extubação/efeitos adversos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Traqueostomia/efeitos adversos , Resultado do Tratamento
14.
J Exp Bot ; 72(7): 2769-2789, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33481007

RESUMO

Malate efflux from roots, which is regulated by the transcription factor STOP1 (SENSITIVE-TO-PROTON-RHIZOTOXICITY1) and mediates aluminum-induced expression of ALUMINUM-ACTIVATED-MALATE-TRANSPORTER1 (AtALMT1), is critical for aluminum resistance in Arabidopsis thaliana. Several studies showed that AtALMT1 expression in roots is rapidly observed in response to aluminum; this early induction is an important mechanism to immediately protect roots from aluminum toxicity. Identifying the molecular mechanisms that underlie rapid aluminum resistance responses should lead to a better understanding of plant aluminum sensing and signal transduction mechanisms. In this study, we observed that GFP-tagged STOP1 proteins accumulated in the nucleus soon after aluminum treatment. The rapid aluminum-induced STOP1-nuclear localization and AtALMT1 induction were detected in the presence of a protein synthesis inhibitor, suggesting that post-translational regulation is involved in these events. STOP1 also regulated rapid aluminum-induced expression for other genes that carry a functional/high-affinity STOP1-binding site in their promoter, including STOP2, GLUTAMATE-DEHYDROGENASE1 and 2 (GDH1 and 2). However STOP1 did not regulate Al resistance genes which have no functional STOP1-binding site such as ALUMINUM-SENSITIVE3, suggesting that the binding of STOP1 in the promoter is essential for early induction. Finally, we report that GDH1 and 2 which are targets of STOP1, are novel aluminum-resistance genes in Arabidopsis.


Assuntos
Alumínio/toxicidade , Proteínas de Arabidopsis , Arabidopsis , Alumínio/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Glutamato Desidrogenase , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo
15.
Biosci Biotechnol Biochem ; 83(12): 2276-2279, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31469034

RESUMO

We introduce a rapid method for easily elucidating transcription factor (TF) cis-elements by adopting a highly efficient in vitro protein synthesis method and identifying protein-DNA interactions using PCR. We determined two cis-elements for plant TFs using this method, and the results confirmed our method as an easy and time-saving alternative for elucidating TF cis-elements using common laboratory procedures.


Assuntos
Fatores de Transcrição/metabolismo , Sítios de Ligação , Proteínas de Plantas/metabolismo
16.
Plant Physiol ; 181(2): 499-509, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31366719

RESUMO

Homologous recombination is a key process for maintaining genome integrity and diversity. In eukaryotes, the nucleosome structure of chromatin inhibits the progression of homologous recombination. The DNA repair and recombination protein RAD54 alters the chromatin structure via nucleosome sliding to enable homology searches. For homologous recombination to progress, appropriate recruitment and dissociation of RAD54 is required at the site of homologous recombination; however, little is known about the mechanism regulating RAD54 dynamics in chromatin. Here, we reveal that the histone demethylase LYSINE-SPECIFIC DEMETHYLASE1-LIKE 1 (LDL1) regulates the dissociation of RAD54 at damaged sites during homologous recombination repair in the somatic cells of Arabidopsis (Arabidopsis thaliana). Depletion of LDL1 leads to an overaccumulation of RAD54 at damaged sites with DNA double-strand breaks. Moreover, RAD54 accumulates at damaged sites by recognizing histone H3 Lys 4 di-methylation (H3K4me2); the frequency of the interaction between RAD54 and H3K4me2 increased in the ldl1 mutant with DNA double-strand breaks. We propose that LDL1 removes RAD54 at damaged sites by demethylating H3K4me2 during homologous recombination repair and thereby maintains genome stability in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , DNA Helicases/metabolismo , Histona Desmetilases/metabolismo , Reparo de DNA por Recombinação , Arabidopsis/genética , Histonas/metabolismo
17.
Plant Physiol ; 180(3): 1629-1646, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31064811

RESUMO

Hydrogen peroxide (H2O2) is a common signal molecule initiating transcriptional responses to all the known biotic and abiotic stresses of land plants. However, the degree of involvement of H2O2 in these stress responses has not yet been well studied. Here we identify time-dependent transcriptome profiles stimulated by H2O2 application in Arabidopsis (Arabidopsis thaliana) seedlings. Promoter prediction based on transcriptome data suggests strong crosstalk among high light, heat, and wounding stress responses in terms of environmental stresses and between the abscisic acid (ABA) and salicylic acid (SA) responses in terms of phytohormone signaling. Quantitative analysis revealed that ABA accumulation is induced by H2O2 but SA is not, suggesting that the implied crosstalk with ABA is achieved through ABA accumulation while the crosstalk with SA is different. We identified potential direct regulatory pairs between regulator transcription factor (TF) proteins and their regulated TF genes based on the time-course transcriptome analysis for the H2O2 response, in vivo regulation of the regulated TF by the regulator TF identified by expression analysis of mutants and overexpressors, and in vitro binding of the regulator TF protein to the target TF promoter. These analyses enabled the establishment of part of the transcriptional regulatory network for the H2O2 response composed of 15 regulatory pairs of TFs, including five pairs previously reported. This regulatory network is suggested to be involved in a wide range of biotic and abiotic stress responses in Arabidopsis.


Assuntos
Arabidopsis/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Redes Reguladoras de Genes , Peróxido de Hidrogênio/farmacologia , Plântula/genética , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Proteínas de Arabidopsis/genética , Peróxido de Hidrogênio/metabolismo , Oxidantes/metabolismo , Oxidantes/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Regiões Promotoras Genéticas/genética , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fatores de Transcrição/genética
18.
Bio Protoc ; 9(3): e3155, 2019 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33654964

RESUMO

Identification of specific DNA binding sites of transcription factors is important in understanding their functions. Recent techniques allow us to investigate genome-wide in vivo binding positions by chromatin immunoprecipitation combined with high-throughput sequencing. However, to further explore the binding motifs of transcription factors, in-depth biochemical analysis is required. Here, we describe an efficient protocol of protein-DNA interactions based on a combination of our in vitro transcription/translation system and AlphaScreen® technology. The in vitro transcription/translation system supports an efficient and quick way of protein synthesis by alleviating cumbersome cloning steps. In addition, AlphaScreen® system provides a highly sensitive, quick, and easy handling platform to investigate the protein-DNA interactions in vitro. Thus, our method largely contributes to comprehensive analysis of the biochemical properties of transcription factors.

19.
PLoS Pathog ; 14(11): e1007447, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30458055

RESUMO

Regulated degradation of proteins by the 26S proteasome plays important roles in maintenance and signalling in eukaryotic cells. Proteins are marked for degradation by the action of E3 ligases that site-specifically modify their substrates by adding chains of ubiquitin. Innate immune signalling in plants is deeply reliant on the ubiquitin-26S proteasome system. While progress has been made in understanding substrate ubiquitination during plant immunity, how these substrates are processed upon arrival at the proteasome remains unclear. Here we show that specific members of the HECT domain-containing family of ubiquitin protein ligases (UPL) play important roles in proteasomal substrate processing during plant immunity. Mutations in UPL1, UPL3 and UPL5 significantly diminished immune responses activated by the immune hormone salicylic acid (SA). In depth analyses of upl3 mutants indicated that these plants were impaired in reprogramming of nearly the entire SA-induced transcriptome and failed to establish immunity against a hemi-biotrophic pathogen. UPL3 was found to physically interact with the regulatory particle of the proteasome and with other ubiquitin-26S proteasome pathway components. In agreement, we demonstrate that UPL3 enabled proteasomes to form polyubiquitin chains, thereby regulating total cellular polyubiquitination levels. Taken together, our findings suggest that proteasome-associated ubiquitin ligase activity of UPL3 promotes proteasomal processivity and is indispensable for development of plant immunity.


Assuntos
Imunidade Vegetal/imunologia , Complexos Ubiquitina-Proteína Ligase/genética , Ubiquitina-Proteína Ligases/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ligases/genética , Ligases/metabolismo , Imunidade Vegetal/fisiologia , Poliubiquitina/genética , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Ácido Salicílico/metabolismo , Ubiquitina/metabolismo , Complexos Ubiquitina-Proteína Ligase/metabolismo , Ubiquitinação
20.
Methods Mol Biol ; 1830: 337-349, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30043380

RESUMO

Biotic and abiotic stimuli induce profound transcriptional reprograming in plants through sophisticated regulation of transcription factors (TFs). Recombinant proteins of TFs play an important role in unveiling their molecular functions. Cell-free protein synthesis (CFPS) system from wheat germ has been developed as one of the most efficient protein synthesis platforms. However, preparation of linear DNA templates for in vitro transcription is time-consuming and laborious. Here, we describe a versatile method for in vitro transcription and translation of the wheat germ CFPS system. Our two-step PCR method enables researchers to generate a variety of transcription templates from a single plasmid including fusion proteins of an N- or C-terminal tag and truncated proteins. Thus, this method supports a rapid and high-throughput expression of proteins for a large-scale proteomics analysis.


Assuntos
Arabidopsis/metabolismo , Biologia Molecular/métodos , Biossíntese de Proteínas , Fatores de Transcrição/metabolismo , Western Blotting , Sistema Livre de Células , DNA Complementar/genética , Eletroforese em Gel de Poliacrilamida , Reação em Cadeia da Polimerase , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA