RESUMO
Schistosomiasis remains the most devastating neglected tropical disease, affecting over 240 million people world-wide. The disease is caused by the eggs laid by mature female worms that are trapped in host's tissues, resulting in chronic Th2 driven fibrogranulmatous pathology. Although the disease can be treated with a relatively inexpensive drug, praziquantel (PZQ), re-infections remain a major problem in endemic areas. There is a need for new therapeutic drugs and alternative drug treatments for schistosomiasis. The current study hypothesized that cysteinyl leukotrienes (cysLTs) could mediate fibroproliferative pathology during schistosomiasis. Cysteinyl leukotrienes (cysLTs) are potent lipid mediators that are known to be key players in inflammatory diseases, such as asthma and allergic rhinitis. The present study aimed to investigate the role of cysLTR1 during experimental acute and chronic schistosomiasis using cysLTR1-/- mice, as well as the use of cysLTR1 inhibitor (Montelukast) to assess immune responses during chronic Schistosoma mansoni infection. Mice deficient of cysLTR1 and littermate control mice were infected with either high or low dose of Schistosoma mansoni to achieve chronic or acute schistosomiasis, respectively. Hepatic granulomatous inflammation, hepatic fibrosis and IL-4 production in the liver was significantly reduced in mice lacking cysLTR1 during chronic schistosomiasis, while reduced liver pathology was observed during acute schistosomiasis. Pharmacological blockade of cysLTR1 using montelukast in combination with PZQ reduced hepatic inflammation and parasite egg burden in chronically infected mice. Combination therapy led to the expansion of Tregs in chronically infected mice. We show that the disruption of cysLTR1 is dispensable for host survival during schistosomiasis, suggesting an important role cysLTR1 may play during early immunity against schistosomiasis. Our findings revealed that the combination of montelukast and PZQ could be a potential prophylactic treatment for chronic schistosomiasis by reducing fibrogranulomatous pathology in mice. In conclusion, the present study demonstrated that cysLTR1 is a potential target for host-directed therapy to ameliorate fibrogranulomatous pathology in the liver during chronic and acute schistosomiasis in mice.
Assuntos
Acetatos , Ciclopropanos , Modelos Animais de Doenças , Camundongos Knockout , Quinolinas , Receptores de Leucotrienos , Esquistossomose mansoni , Sulfetos , Animais , Camundongos , Acetatos/uso terapêutico , Acetatos/farmacologia , Doença Crônica , Ciclopropanos/uso terapêutico , Ciclopropanos/farmacologia , Antagonistas de Leucotrienos/farmacologia , Antagonistas de Leucotrienos/uso terapêutico , Fígado/parasitologia , Fígado/patologia , Fígado/metabolismo , Fígado/imunologia , Camundongos Endogâmicos C57BL , Praziquantel/uso terapêutico , Praziquantel/farmacologia , Quinolinas/uso terapêutico , Quinolinas/farmacologia , Receptores de Leucotrienos/metabolismo , Schistosoma mansoni/imunologia , Esquistossomose mansoni/tratamento farmacológico , Esquistossomose mansoni/imunologia , Esquistossomose mansoni/parasitologia , Sulfetos/uso terapêutico , Sulfetos/farmacologia , Linfócitos T Reguladores/imunologiaRESUMO
Schistosomiasis is the second most widespread parasitic disease affecting humans. A key component of today's infection control measures is the diagnosis and monitoring of infection, informing individual- and community-level treatment. However, newly acquired infections and/or low parasite burden are still difficult to diagnose reliably. Furthermore, even though the pathological consequence of schistosome egg sequestration in host tissues is well described, the evidence linking egg burden to morbidity is increasingly challenged, making it inadequate for pathology monitoring. In the last decades, omics-based instruments and methods have been developed, adjusted, and applied in parasitic research. In particular, the profiling of the most reliable determinants of phenotypes, metabolites by metabolomics, emerged as a powerful boost in the understanding of basic interactions within the human host during infection. As such, the fine detection of host metabolites produced upon exposure to parasites such as Schistosoma spp. and the ensuing progression of the disease are believed to enable the identification of Schistosoma spp. potential biomarkers of infection and associated pathology. However, attempts to provide such a comprehensive understanding of the alterations of the human metabolome during schistosomiasis are rare, limited in their design when performed, and mostly inconclusive. In this review, we aimed to briefly summarize the most robust advances in knowledge on the changes in host metabolic profile during Schistosoma infections and provide recommendations for approaches to optimize the identification of metabolomic signatures of human schistosomiasis.
Assuntos
Schistosoma , Esquistossomose , Animais , Humanos , Schistosoma/genética , Esquistossomose/parasitologia , Metaboloma , Biomarcadores , MorbidadeRESUMO
Introduction: HIV-1 and Mtb are characterized by immune activation and unbalances production of cytokines, but the expression of IL33 in HIV/TB coinfection remain understudied. This study aimed to evaluate the level of IL-33 in plasma of HIV and M. tuberculosis (HIV/TB) coinfected patients compared to patients with respective mono infections in Yaoundé. Methods: a cross-sectional study was conducted among patients attending the pneumology service and HIV treatment center of the Yaoundé Jamot Hospital. Plasma samples of 157 HIV/TB coinfected patients (n =26, 50% males and 50% females, mean age 39), HIV-1 monoinfected patients (n = 41, 41% males and 59% females, mean age 35), TB monoinfected patients (n = 48, 56% males and 44% females, mean age 37) and healthy controls (n = 42, 29% males and 71% females, mean age 32) were examined by enzyme-linked immunoassay (ELISA) to detect the levels of IL-33 cytokine. Results: plasma level of IL-33 were higher in HIV/TB coinfected (33.1±30.9 pg/ml) and TB monoinfected individuals (15.1±2.9 pg/ml) compared to healthy controls (14.0±3.4 pg/ml) and could not be detected in most of the HIV-1 monoinfected individuals (12.6±8.7 pg/ml). Interestingly, the increased plasma level of IL-33 in HIV/TB coinfected patients showed a statistically significant difference between healthy controls (33.1±30.9 pg/ml vs 14.0±3.4 pg/ml, P<0.0001) and HIV-1 monoinfected patients (33.1±30.9 pg/ml vs 12.6±8.7 pg/ml, P=0.0002). We further found that IL-33 was higher in patients with high viral load group (40.6±59.7 pg/ml vs 12.6±1.8 pg/ml), P= 0.47) whereas patients under highly active antiretroviral therapy (HAART) showed decreased level of IL-33 concentration as the number of years under ART increased. Our data showed a positive association between plasma IL-33 and viral load in the context of HIV/TB coinfection in our study population with a positive Pearson coefficient of r=0.21. Conclusion: this study indicates that plasma level of IL-33 differs among HIV/TB coinfected patients and respective monoinfections patients. The increased level of plasma IL-33 reveals that IL-33 measurement in HIV-1 monoinfected patients may represent an early predictor of development of tuberculosis.
Assuntos
Coinfecção , Infecções por HIV , Interleucina-33 , Tuberculose , Adulto , Feminino , Humanos , Masculino , Camarões , Estudos Transversais , Citocinas , Interleucina-33/sangue , Mycobacterium tuberculosis , Tuberculose/epidemiologiaRESUMO
In September 2022, the Drug Discovery Unit at the University of Dundee, UK, organised an international meeting at the Wellcome Collection in London to explore the current clinical situation and challenges associated with treating schistosomiasis. The aim of this meeting was to discuss the need for new treatments in view of the clinical situation and to ascertain what the key requirements would be for any potential new anti-schistosomals. This information will be essential to inform ongoing drug discovery efforts for schistosomiasis. We also discussed the potential drug discovery pathway and associated criteria for progressing compounds to the clinic. To date, praziquantel (PZQ) is the only drug available to treat all species causing schistosomiasis, but it is often unable to completely clear parasites from an infected patient, partially due to its inactivity against juvenile worms. PZQ-mediated mass drug administration campaigns conducted in endemic areas (e.g., sub-Saharan Africa, where schistosomiasis is primarily prevalent) have contributed to reducing the burden of disease but will not eliminate the disease as a public health problem. The potential for Schistosoma to develop resistance towards PZQ, as the sole treatment available, could become a concern. Consequently, new anthelmintic medications are urgently needed, and this Perspective aims to capture some of the learnings from our discussions on the key criteria for new treatments.
Assuntos
Anti-Helmínticos , Esquistossomose , Animais , Londres , Esquistossomose/tratamento farmacológico , Praziquantel/farmacologia , Praziquantel/uso terapêutico , Anti-Helmínticos/farmacologia , Anti-Helmínticos/uso terapêutico , SchistosomaRESUMO
Schistosomiasis is a potentially lethal parasitic disease that profoundly impacts systemic immune function in chronically infected hosts through mechanisms that remain unknown. Given the immunoregulatory dysregulation experienced in infected individuals, this study examined the impact of chronic schistosomiasis on the sustainability of vaccine-induced immunity in both children living in endemic areas and experimental infections in mice. Data show that chronic Schistosoma mansoni infection impaired the persistence of vaccine specific antibody responses in poliovirus-vaccinated humans and mice. Mechanistically, schistosomiasis primarily fostered plasmablast and plasma cell death in the bone marrow and removal of parasites following praziquantel treatment reversed the observed cell death and partially restored vaccine-induced memory responses associated with increased serum anti-polio antibody responses. Our findings strongly suggest a previously unrecognized mechanism to explain how chronic schistosomiasis interferes with an otherwise effective vaccine regimen and further advocates for therapeutic intervention strategies that reduce schistosomiasis burden in endemic areas prior to vaccination.
Assuntos
Esquistossomose mansoni , Esquistossomose , Vacinas , Animais , Medula Óssea , Morte Celular , Camundongos , Plasmócitos , Schistosoma mansoni , Vacinas/uso terapêuticoRESUMO
Schistosomiasis is a debilitating helminthiasis which commonly establishes as a chronic infection in people from endemic areas. As a potent modulator of the host immune response, the Schistosoma parasite and its associated products can directly interfere with its host's ability to mount adequate immune responses to unrelated antigens. As a result, increased attention is gathering on studies assessing the influence of helminths, particularly the causal agent of schistosomiasis, on host responsiveness to vaccines. However, to date, no consensus has been drawn regarding the influence of schistosomiasis on host vaccine responses. Here, we review available evidence on the influence of transgenerational and direct Schistosoma parasite exposure on host immune responses to unrelated vaccines. In addition, we evaluate the potential of praziquantel (PZQ) treatment in restoring schistosomiasis-impacted vaccine responses.
Assuntos
Anti-Helmínticos , Esquistossomose , Vacinas , Animais , Anti-Helmínticos/farmacologia , Anti-Helmínticos/uso terapêutico , Humanos , Imunidade , Praziquantel/farmacologia , Praziquantel/uso terapêutico , Schistosoma , Esquistossomose/tratamento farmacológico , Esquistossomose/prevenção & controleRESUMO
Beyond transient control of the infection, additional benefits of mass drug administration of praziquantel in endemic communities have been suggested in communities but not mechanistically investigated experimentally. The present study sought to evaluate the additional and hitherto unreported benefits of repeated mass drug administration of praziquantel. We used a tractable mouse model of Schistosoma mansoni infection to assess the effects of repeated infection-treatment cycles on the host susceptibility to reinfection. Parasitaemia was assessed by quantification of Schistosoma egg burden in liver tissues and morbidity was followed up by histological observation of liver lesions by microscopy and using biochemical measurement of liver transaminases. Immune responses were further determined by serum probing of schistosoma-specific antibodies, cytokines and quantification of liver cellular and soluble mediator responses by flow cytometry and ELISA, respectively. At similar ages and comparable gender distribution, groups of mice undergoing higher number of infections treatment cycles over a longer period, remained susceptible to reinfection by the parasite, as judged by the presence of eggs and the associated increasing pathology in the liver tissues. However, notably, there was a clear and significantly higher propensity to lower egg burden upon reinfection when compared to counterparts undergoing a lower number of infection-treatment cycles. This relative reduction of susceptibility to infection was paralleled by a more robust humoral response against parasite antigens, elevated serum IL-4 and liver cytokines. Of note, praziquantel treatment of infected mice left them at a higher baseline of serum IL-4, IgE and liver cytokines but lower CD4+ T cell -derived cytokines when compared to infected non-treated mice supporting an immunological treatment-induced advantage of previously infected mice over naïve mice and infected/not treated mice. Notably, repeated infection-treatment cycles did not preclude the infection-driven aggravation of collagen deposition in the livers over time and was corroborated by a more robust local production of inflammatory cytokines in the most exposed livers. Taken together, our data reveal that treatment of S. mansoni-infected hosts with praziquantel rewires the immune system to a conformation less permissive to subsequent reinfection in mice. Provided the data are translatable from mouse to human, our findings may provide mechanistic support to the potential benefits of more frequent MDAs in high transmission areas to allow rapid acquisition of protective immunity against reinfection.
Assuntos
Anti-Helmínticos/farmacologia , Praziquantel/farmacologia , Schistosoma mansoni/efeitos dos fármacos , Esquistossomose mansoni/tratamento farmacológico , Administração Oral , Animais , Anti-Helmínticos/administração & dosagem , Citometria de Fluxo , Camundongos , Camundongos Endogâmicos , Testes de Sensibilidade Parasitária , Praziquantel/administração & dosagem , Schistosoma mansoni/imunologia , Esquistossomose mansoni/imunologia , Esquistossomose mansoni/parasitologiaRESUMO
Tissue fibrosis underlies the majority of human mortality to date with close to half of all reported deaths having a fibrotic etiology. The progression of fibrosis is very complex and reputed irreversible once established. Although some preventive options are being reported, therapeutic options are still scarce and in very high demand, given the rise of diseases linked to fibroproliferative disorders. Our work explored four platforms, complementarily, in order to screen preventive and therapeutic potentials of the antiparasitic drug Praziquantel as a possible antifibrotic. We applied the mouse CCl4-driven liver fibrosis model, the mouse chronic schistosomiasis liver fibrosis model, as well as novel 2D and 3D human cell-based co-culture of human hepatocytes, KCs (Kupffer cells), LECs (Liver Endothelial Cells), HSCs (Hepatic Stellate Cells) and/or myofibroblasts to mimic in vivo fibrotic responses and dynamics. Praziquantel showed some effect on fibrosis marker when preventively administered before severe establishment of fibrosis. However, it failed to potently reverse already established fibrosis. Together, we provided a novel sophisticated multi-assay screening platform to test preventive and therapeutic antifibrotic candidates. We further demonstrated a direct preventive potential of Praziquantel against the onset of fibrosis and the confirmation of its lack of therapeutic potential in reversing already established fibrosis.
Assuntos
Antiparasitários/uso terapêutico , Cirrose Hepática/tratamento farmacológico , Praziquantel/uso terapêutico , Esquistossomose/tratamento farmacológico , Animais , Antiparasitários/farmacologia , Feminino , Células Estreladas do Fígado/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Células de Kupffer/efeitos dos fármacos , Cirrose Hepática/etiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Miofibroblastos/efeitos dos fármacos , Praziquantel/farmacologia , Esquistossomose/complicaçõesRESUMO
Background: Alveolar echinococcosis (AE), caused by the metacestode larval stage of the fox-tapeworm Echinococcus multilocularis, is a chronic zoonosis associated with significant modulation of the host immune response. A role of regulatory T-cells (Treg) in generating an immunosuppressive environment around the metacestode during chronic disease has been reported, but the molecular mechanisms of Treg induction by E. multilocularis, particularly parasite immunoregulatory factors involved, remain elusive so far. Methodology/Principal Findings: We herein demonstrate that excretory/secretory (E/S) products of the E. multilocularis metacestode promote the formation of Foxp3+ Treg from CD4+ T-cells in vitro in a TGF-ß-dependent manner, given that this effect was abrogated by treatment with antibody to mammalian TGF-ß. We also show that host T-cells secrete elevated levels of the immunosuppressive cytokine IL-10 in response to metacestode E/S products. Within the E/S fraction of the metacestode we identified an E. multilocularis activin A homolog (EmACT) that displays significant similarities to mammalian Transforming Growth Factor-ß (TGF-ß/activin subfamily members. EmACT obtained from heterologous expression failed to directly induce Treg expansion from naïve T cells but required addition of recombinant host TGF-ß to promote CD4+ Foxp3+ Treg conversion in vitro. Furthermore, like in the case of metacestode E/S products, EmACT-treated CD4+ T-cells secreted higher levels of IL-10. These observations suggest a contribution of EmACT to in vitro expansion of Foxp3+ Treg by the E. multilocularis metacestode. Using infection experiments we show that intraperitoneally injected metacestode tissue expands host Foxp3+ Treg, confirming the expansion of this cell type in vivo during parasite establishment. Conclusion/Significance: In conclusion, we herein demonstrate that E. multilocularis larvae secrete factors that induce the secretion of IL-10 by T-cells and contribute to the expansion of TGF-b-driven Foxp3+ Treg, a cell type that has been reported crucial for generating a tolerogenic environment to support parasite establishment and proliferation. Among the E/S factors of the parasite we identified a factor with structural and functional homologies to mammalian activin A which might play an important role in these activities.
Assuntos
Echinococcus multilocularis/imunologia , Interações Hospedeiro-Parasita/imunologia , Linfócitos T Reguladores/imunologia , Ativinas/imunologia , Animais , Citocinas/imunologia , Echinococcus multilocularis/química , Fatores de Transcrição Forkhead/imunologia , Interleucina-10/imunologia , Larva/química , Larva/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Fator de Crescimento Transformador beta/imunologiaRESUMO
The grading system for ultrasonographic assessment of Schistosoma mansoni morbidity is crucial for evaluation of control programs. This requires prior definition of normal liver organometric ranges in the population from the endemic area. A cross-sectional study was conducted in a S. mansoni endemic area in rural Cameroon. 1002 Participants were screened and 234 of them, free from all common liver-affecting diseases in the area (schistosomiasis, malaria, hepatitis B and C) and with no ultrasonographic signs of liver disease were selected and their liver parameters measured by ultrasonography. All statistics were considered significant for p-values < 0.05. Normal dimensions of livers lobe sizes, portal vein wall thickness and portal vein diameters are reported. The liver organometric data are presented for the entire study population as a whole and separately for males and females as prediction plots, with observed values and fitted regression line with 95% confidence. Reference ranges for liver parameters (size, portal vein thickness and diameter) adjusted for body height established in the current study are novel for Cameroon. The prediction plots generated should improve the accuracy of the assessment of liver morbidity by ultrasonography in the region.
Assuntos
Fígado/diagnóstico por imagem , Veia Porta/diagnóstico por imagem , Ultrassonografia , Adolescente , Animais , Estatura , Camarões/epidemiologia , Criança , Pré-Escolar , Feminino , Hepatomegalia/epidemiologia , Hepatomegalia/parasitologia , Humanos , Fígado/anatomia & histologia , Fígado/parasitologia , Fígado/fisiologia , Masculino , Veia Porta/parasitologia , Veia Porta/fisiologia , Schistosoma mansoni/patogenicidade , Esquistossomose mansoni/diagnóstico por imagem , Esquistossomose mansoni/fisiopatologia , Instituições Acadêmicas , Baço/parasitologia , Esplenomegalia/epidemiologia , Esplenomegalia/parasitologiaRESUMO
Background: This study aimed to investigate the association of plasma levels of IL-33, a mucosal alarmin known to elicit type-2 immunity, with infection and liver fibrosis profiles of school children from an endemic area for Schistosoma mansoni, malaria and hepatitis (B & C) in rural Cameroon. Methods: A cross-sectional study enrolling schoolchildren from 5 public schools was conducted. Single schistosomiasis, malaria and hepatitis infections or co-infections were assessed by kato katz, microscopy, and rapid diagnostic tests, respectively. Hepatic fibrosis was assessed by ultrasound according to WHO Niamey guidelines and plasma levels of Interleukin 33 were determined by ELISA. All statistics were performed using R studio software. Principal findings: We found a prevalence of 13.5% (37/275), 18.2% (50/275), and 8% (22/275), respectively for schistosomiasis, malaria and hepatitis (B or C) single infections. Only 7.6% (21/275) of co-infections were reported. Although Plasma IL-33 showed a minimal negative risk for schistosomiasis infection (AOR 0.99; 95% CI 0.97-1.01), S. mansoni infected participants had lower levels of plasma IL-33 (p = 0.003) which decreased significantly as eggs burdens increased (p = 0.01) with a negative Pearson coefficient of r = -0.22. Hepatic fibrosis occurred in 47.3% (130/275) of our study population independently from plasma levels of IL-33 (AOR 1.00; 95% CI 0.99-1.01). Conclusion/Significance: Our data failed to show an association between plasma IL-33 levels and liver disease but convincingly report on a negative association between plasma IL-33 levels and schistosomiasis infection and egg burden in school children from a polyparasitic schistosomiasis endemic area.
Assuntos
Interleucina-33/sangue , Esquistossomose mansoni/sangue , Adolescente , Animais , Camarões/epidemiologia , Criança , Coinfecção/sangue , Coinfecção/epidemiologia , Feminino , Hepatite/sangue , Hepatite/epidemiologia , Humanos , Cirrose Hepática/sangue , Cirrose Hepática/epidemiologia , Malária/sangue , Malária/epidemiologia , Masculino , Prevalência , População Rural , Schistosoma mansoni , Esquistossomose mansoni/epidemiologiaRESUMO
Development of IL-4 receptor alpha (IL-4Rα)-dependent cellular immunity regulates host protection against acute schistosomiasis. In this study, we investigated the importance of IL-4Rα-expressing CD11c+ cells in driving the development of optimal cellular responses to Schistosoma mansoni infection by using CD11ccre IL-4Rα-/lox BALB/c mice, which lacked IL-4Rα expression on dendritic cells and alveolar macrophages. Abrogation of IL-4Rα expression on CD11c+ cells affected activation of CD4+ T cells, resulting in reduced numbers of effector CD4+ T cells and impaired production of Th1 and Th2 cytokines by CD4+ T cells ex vivo. However, secretion of both type 1 and type 2 Ab isotypes was unchanged in infected CD11c-specific IL-4Rα-deficient mice compared to littermate controls. Together, these data demonstrate that IL-4Rα-expressing CD11c+ cells play an important role in maintaining cellular immunity during schistosomiasis in mice.
Assuntos
Antígeno CD11c/metabolismo , Receptores de Superfície Celular/metabolismo , Schistosoma mansoni/patogenicidade , Esquistossomose mansoni/imunologia , Animais , Anticorpos Anti-Helmínticos/imunologia , Linfócitos T CD4-Positivos/imunologia , Citocinas/metabolismo , Imunoglobulina E/biossíntese , Imunoglobulina G/biossíntese , Inflamação/patologia , Fígado/parasitologia , Fígado/patologia , Linfonodos/patologia , Camundongos Endogâmicos BALB C , Receptores de Superfície Celular/deficiência , Esquistossomose mansoni/patologia , Células Th1/imunologia , Células Th2/imunologiaRESUMO
Liver fibrosis is a wound-healing process purposely aimed at restoring organ integrity after severe injury caused by autoimmune reactions, mechanical stress or infections. The uncontrolled solicitation of this process is pathogenic and a pathognomonic feature of diseases like hepatosplenic schistosomiasis where exacerbated liver fibrosis is centrally positioned among the drivers of the disease morbidity and mortality. Intriguingly, however, liver fibrosis occurs and progresses dissimilarly in schistosomiasis-diseased individuals with the same egg burden and biosocial features including age, duration of residence in the endemic site and gender. This suggests that parasite-independent and currently poorly defined host intrinsic factors might play a defining role in the regulation of liver fibrosis, the hallmark of morbidity, during schistosomiasis. In this review, we therefore provide a comprehensive overview of all known host candidate regulators of liver fibrosis reported in the context of human schistosomiasis.
Assuntos
Cirrose Hepática , Schistosoma mansoni/imunologia , Esquistossomose mansoni , Animais , Humanos , Cirrose Hepática/imunologia , Cirrose Hepática/parasitologia , Cirrose Hepática/patologia , Esquistossomose mansoni/imunologia , Esquistossomose mansoni/patologiaRESUMO
Forkhead box P3 (Foxp3+) regulatory T (Treg)-cell function is controlled by environmental cues of which cytokine-mediated signaling is a dominant component. In vivo, interleukin-4 (IL-4)-mediated signaling via IL-4 receptor alpha (IL-4Rα) mediates Treg cell transdifferentiation into ex-Foxp3 T helper 2 (Th2) or T helper 17 (Th17) cells. However, IL-4-mediated signaling also reinforces the Foxp3 Treg compartment in vitro. We generated Foxp3-specific IL-4Rα-deficient mice and demonstrated differential efficiency of IL-4Rα deletion in male (approximately 90%) and female (approximately 40%) animals, because of cyclic recombinase (Cre)-mediated X-linked foxp3 inactivation. Irrespective of the degree of IL-4Rα deletion within the Foxp3+ Treg cell population, mice showed exacerbation of immune effector responses with aggravated tissue pathology in tissue-dwelling helminth infections (Schistosoma mansoni or Nippostrongylus brasiliensis). Mechanistically, IL-4Rα deletion in males and females led to a reduced expression of Foxp3 and subsequently an impaired accumulation of Foxp3+ Treg cells to inflamed tissues. In-depth cellular typing by flow cytometry revealed that the impairment of IL-4Rα-mediated signaling during helminth infections decreased the ability of central Treg cells to convert into effector Treg (eTreg) cells and caused a significant down-regulation of markers associated with Treg cell migration (C-X-C motif chemokine receptor 3 [CXCR3]) and accumulation in inflamed tissues (GATA binding protein 3 [GATA3]) as well as survival (B cell lymphoma 2 [Bcl-2]). These findings unprecedentedly, to our knowledge, uncover a role for IL-4Rα signaling in the positive regulation of Foxp3+ Treg cell function in vivo. Complementing our past knowledge on a widely reported role for IL-4Rα signaling in the negative regulation and transdifferentiation of Foxp3+ Treg cells in vivo, our present findings reveal the host requirement for an intact, but not reduced or potentiated, IL-4Rα-mediated signaling on Foxp3+ Treg cells to optimally control inflammation during helminth infections.
Assuntos
Fatores de Transcrição Forkhead/fisiologia , Helmintíase/imunologia , Receptores de Superfície Celular/fisiologia , Animais , Feminino , Fatores de Transcrição Forkhead/metabolismo , Helmintíase Animal/imunologia , Helmintos/patogenicidade , Inflamação/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Nippostrongylus , Schistosoma mansoni , Esquistossomose mansoni/imunologia , Esquistossomose mansoni/veterinária , Transdução de Sinais , Infecções por Strongylida , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/fisiologia , Células Th17 , Células Th2RESUMO
Background and Methods: Schistosomiasis is debilitating and reported to impair immune responsiveness of infected hosts. In Cameroon, mass drug administration (MDA) is used in schoolchildren to reduce transmission of S. haematobium and S. mansoni. The effects of MDA and the impact of schistosomiasis on the titers of antibodies in vaccinated children have been poorly studied. We therefore assessed the prevalence of schistosomiasis in schoolchildren, eight months after MDA, in two locations: Barombi Koto (BK), endemic for S. haematobium (N = 169) and Yoro (Y), endemic for S. mansoni (N = 356). Age, gender, residence time and frequency of contact with river water were assessed as risk factors for infection and morbidity in both localities. In 70 schoolchildren from BK and 83 from Y, ultrasound was used to assess morbidity according to the WHO guidelines. Evaluation of measles antibodies was performed in previously vaccinated schoolchildren (14 with S. haematobium and 12 egg-negative controls from BK and 47 with S. mansoni and12 egg-negative controls from Y). Principal Findings and conclusions: The prevalence of S. haematobium was 25. 4% in BK (43/169) and 34.8% for S. mansoni in Y (124/356), indicating the persistent transmission of schistosomiasis despite MDA. Older age (AOR 1.31; 95%CI 1.12-1.54) and higher frequencies of exposure to river water (AOR 1.99; 95%CI 1.03-3.86) were identified as risks for infection in BK whereas only older age (OR 1.15; 95%CI 1.04-1.27) was a risk for infection in Y. Bladder pathology (score 2 to 5) was observed in 29.2% (7/24) of egg-positive children in BK and liver pathology (pattern C) in 31.1% (19/61) of egg-positive children in Y. There was a positive correlation between S. haematobium egg burden and bladder pathology (AOR 1.01; 95% CI 0.99-1.02) and positive correlation between S. mansoni-driven liver pathology and female gender (AOR 3.01; 95% CI 0.88-10.26). Anti-measles antibodies in vaccinated children were significantly lower in S. mansoni-infected when compared to egg-negative controls (p = 0.001), which was not observed in the S. haematobium-infected group from BK. Our results demonstrate a questionable efficacy of MDA alone in halting schistosomiasis transmission and confirm a possible immunomodulatory effect of S. mansoni on response to vaccines.
Assuntos
Vacina contra Sarampo/imunologia , Sarampo/imunologia , Sarampo/prevenção & controle , População Rural , Schistosoma/imunologia , Esquistossomose/imunologia , Esquistossomose/parasitologia , Adolescente , Adulto , Animais , Camarões/epidemiologia , Criança , Feminino , Interações Hospedeiro-Parasita/imunologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Masculino , Sarampo/virologia , Morbidade , Vigilância da População , Prevalência , Fatores de Risco , Adulto JovemRESUMO
Schistosomiasis (bilharzia) is a parasitic helminth disease that can cause severe inflammatory pathology leading to organ damage in humans. Failure of the host to regulate egg-driven granulomatous inflammation causes host morbidity during chronic infection with Schistosoma mansoni. Although the importance of B cells in regulating pathology during chronic infection has been well defined, the specific contribution of IL-4Rα-expressing B cells is still unknown. To address this, we examined B cell-specific IL-4Rα-deficient (mb1creIL-4Rα-/lox) mice in three experimental models of schistosomiasis: high-dose (100 cercariae), low dose (30 cercariae), and a synchronous egg challenge. In the high dose model, we found that mice deficient in IL-4Rα-expressing B cells were more susceptible to acute schistosomiasis than B cell-deficient (µMT) mice, succumbing to infection at the acute stage whereas µMT mice survived until the chronic stage. An S. mansoni egg challenge model demonstrated that deleting IL-4Rα expression specifically on B cells resulted in increased lung granulomatous pathology, suggesting a role for this B cell subset in controlling granulomatous pathology. In agreement with this, a low dose model of schistosomiasis-which mimics the course of clinical chronic disease-demonstrated that depleting IL-4Rα-expressing B cells in mb1creIL-4Rα-/lox mice considerably impaired the host ability to down-modulate granulomatous inflammation in the liver and gut during chronic schistosomiasis. Taken together, our findings indicate that within the B cell compartment, IL-4Rα-expressing B cells in particular down-modulate the deleterious egg-driven tissue granulomatous inflammation to enable host survival during schistosomiasis in mice.
Assuntos
Linfócitos B/imunologia , Inflamação/imunologia , Receptores de Superfície Celular/metabolismo , Schistosoma mansoni/imunologia , Esquistossomose mansoni/imunologia , Animais , Linfócitos B/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Inflamação/mortalidade , Inflamação/parasitologia , Intestinos/imunologia , Intestinos/parasitologia , Intestinos/patologia , Fígado/imunologia , Fígado/parasitologia , Fígado/patologia , Pulmão/imunologia , Pulmão/parasitologia , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Receptores de Superfície Celular/genética , Schistosoma mansoni/patogenicidade , Esquistossomose mansoni/mortalidade , Esquistossomose mansoni/parasitologiaRESUMO
Interleukin-4 (IL-4)-induced T helper (Th) 2 cells promote susceptibility to the protozoan parasite Leishmania major, while conferring immunity to the intestinal trematode Schistosoma mansoni Here, we report that abrogation of IL-4 receptor alpha (IL-4Rα) signaling on B cells in BALB/c mice (mb1creIL-4Rα-/lox) transformed nonhealer BALB/c to a healer phenotype with an early type 1 and dramatically reduced type 2 immune response and an absence of ulceration and necrosis during cutaneous leishmaniasis. From adoptive reconstitution and mixed bone-marrow chimera studies in B cell-deficient (µMT) mice, we reveal a central role for B cell-derived IL-4 and IL-4Rα in the optimal induction of the susceptible type 2 phenotype to L. major infection. We further demonstrate that the absence of IL-4Rα signaling on B cells exacerbated S. mansoni-induced mortality and pathology in BALB/c mice, due to a diminished type 2 immune response. In both disease models, IL-4Rα-responsive B cells displayed increased IL-4 production as early as day 1 after infection. Together, these results demonstrate that IL-4-producing and IL-4Rα-responsive B cells are critical in regulating and assisting early T helper dichotomy toward Th2 responses, which are detrimental in cutaneous leishmaniasis but beneficial in acute schistosomiasis.
Assuntos
Linfócitos B/imunologia , Interleucina-4/metabolismo , Leishmaniose Cutânea/imunologia , Receptores de Interleucina-4/metabolismo , Esquistossomose/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Células Cultivadas , Leishmania major/imunologia , Leishmaniose Cutânea/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Receptores de Interleucina-4/imunologia , Schistosoma mansoni/imunologia , Esquistossomose/parasitologia , Transdução de SinaisRESUMO
Interleukin-4 receptor (IL-4Rα) is critical for the initiation of type-2 immune responses and implicated in the pathogenesis of experimental schistosomiasis. IL-4Rα mediated type-2 responses are critical for the control of pathology during acute schistosomiasis. However, type-2 responses tightly associate with fibrogranulomatous inflammation that drives host pathology during chronic schistosomiasis. To address such controversy on the role of IL-4Rα, we generated a novel inducible IL-4Rα-deficient mouse model that allows for temporal knockdown of il-4rα gene after oral administration of Tamoxifen. Interrupting IL-4Rα mediated signaling during the acute phase impaired the development of protective type-2 immune responses, leading to rapid weight loss and premature death, confirming a protective role of IL-4Rα during acute schistosomiasis. Conversely, IL-4Rα removal at the chronic phase of schistosomiasis ameliorated the pathological fibro-granulomatous pathology and reversed liver scarification without affecting the host fitness. This amelioration of the morbidity was accompanied by a reduced Th2 response and increased frequencies of FoxP3+ Tregs and CD1dhiCD5+ Bregs. Collectively, these data demonstrate that IL-4Rα mediated signaling has two opposing functions during experimental schistosomiasis depending on the stage of advancement of the disease and indicate that interrupting IL-4Rα mediated signaling is a viable therapeutic strategy to ameliorate liver fibroproliferative pathology in diseases like chronic schistosomiasis.
Assuntos
Interações Hospedeiro-Parasita , Fígado/patologia , Receptores de Superfície Celular/imunologia , Esquistossomose/imunologia , Células Th2/imunologia , Doença Aguda , Animais , Modelos Animais de Doenças , Feminino , Fibrose , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Superfície Celular/genética , Esquistossomose/genéticaRESUMO
There is currently no vaccine against parasitic nematodes and the knowledge on the mechanisms by which protective immunity against this class of parasites is achieved is continuously expanding. Nematode parasites trigger a host protective type 2 immune response via interleukin-4 receptor alpha (IL-4Rα). Despite this central role, it is not known whether IL-4Rα has a role in maintaining host type 2 immune responses following polarization. To determine the role of IL-4Rα after polarization, we used a recently established strain of rosaCreERT2-/+IL-4Rα-/Lox mice where il4rα gene deletion can be temporally controlled. We show that sustained expression of IL-4Rα is required for the maintenance of type 2 immune responses and protective immunity following interruption after polarization with Nippostrongylus brasiliensis primary infection. Moreover, we show by temporal deletion of IL-4Rα prior to secondary infection with N. brasiliensis that signaling via this receptor drives more efficient recall of type 2 immune responses and clearance of the parasites. Together, this study demonstrates that sustained IL-4Rα mediated signaling is required for the maintenance of anti-nematode type 2 immune responses, describing a novel function for IL-4Rα that is distinct from its role in immune polarization.