Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 7(1): 135, 2024 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-38280981

RESUMO

Clostridioides difficile is the leading cause of antibiotic-associated infectious diarrhea. The development of C.difficile infection is tied to perturbations of the bacterial community in the gastrointestinal tract, called the gastrointestinal microbiota. Repairing the gastrointestinal microbiota by introducing lab-designed bacterial communities, or defined microbial communities, has recently shown promise as therapeutics against C.difficile infection, however, the mechanisms of action of defined microbial communities remain unclear. Using an antibiotic- C.difficile mouse model, we report the ability of an 18-member community and a refined 4-member community to protect mice from two ribotypes of C.difficile (CD027, CD078; p < 0.05). Furthermore, bacteria-free supernatant delivered orally to mice from the 4-member community proteolyzed C.difficile toxins in vitro and protected mice from C.difficile infection in vivo (p < 0.05). This study demonstrates that bacteria-free supernatant is sufficient to protect mice from C.difficile; and could be further explored as a therapeutic strategy against C.difficile infection.


Assuntos
Infecções por Clostridium , Microbiota , Animais , Camundongos , Antibacterianos/farmacologia , Trato Gastrointestinal/microbiologia , Diarreia/prevenção & controle , Diarreia/microbiologia , Bactérias , Infecções por Clostridium/prevenção & controle , Infecções por Clostridium/microbiologia
2.
medRxiv ; 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38234783

RESUMO

Background: Mutations are found in 10-20% of idiopathic PAH (IPAH) patients, but none are consistently identified in connective tissue disease-associated PAH (APAH), which accounts for ∼45% of PAH cases. TET2 mutations, a cause of clonal hematopoiesis of indeterminant potential (CHIP), predispose to an inflammatory type of PAH. We now examine mutations in another CHIP gene, DNMT3A , in PAH. Methods: We assessed DNMT3A mutation prevalence in PAH Biobank subjects as compared with controls, first using whole exome sequencing (WES)-derived CHIP calls in 1832 PAH Biobank patients versus 7509 age-and sex-matched gnomAD controls. We then performed deep, targeted panel sequencing of CHIP genes on a subset of 710 PAH Biobank patients and compared the prevalence of DNMT3A mutations therein to an independent pooled control cohort (N = 3645). In another cohort of 80 PAH patients and 41 controls, DNMT3A mRNA expression was studied in peripheral blood mononuclear cells (PBMCs). Finally, we evaluated the development of PAH in a conditional, hematopoietic, Dnmt3a knockout mouse model. Results: DNMT3A mutations were more frequent in PAH cases versus control subjects in the WES dataset (OR 2.60, 95% CI: 1.71-4.27). Among PAH patients, 33 had DNMT3A variants, most of whom had APAH (21/33). While 21/33 had somatic mutations (female:male 17:4), germline variants occurred in 12/33 (female:male 11:1). Hemodynamics were comparable with and without DNMT3A mutations (mPAP=58±21 vs. 52±18 mmHg); however, patients with DNMT3A mutations were unresponsive to acute vasodilator testing. Targeted panel sequencing identified that 14.6% of PAH patients had CHIP mutations (104/710), with DNMT3A accounting for 49/104. There was a significant association between all CHIP mutations and PAH in analyses adjusted for age and sex (OR 1.40, 95% CI: 1.09-1.80), though DNMT3A CHIP alone was not significantly enriched (OR:1.15, 0.82-1.61). DNMT3A expression was reduced in patient-derived versus control PAH-PBMCs. Spontaneous PAH developed in Dnmt3a -/- mice, and it was exacerbated by 3 weeks of hypoxia. Dnmt3a -/- mice had increased lung macrophages and elevated plasma IL-13. The IL-1ß antibody canakinumab attenuated PAH in Dnmt3a -/- mice. Conclusions: Germline and acquired DNMT3A variants predispose to PAH in humans. DNMT3A mRNA expression is reduced in human PAH PBMCs. Hematopoietic depletion of Dnmt3a causes inflammatory PAH in mice. DNMT3A is a novel APAH gene and may be a biomarker and therapeutic target.

3.
Front Microbiol ; 12: 764733, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34764949

RESUMO

Acinetobacter baumannii and Klebsiella pneumoniae currently rank amongst the most antibiotic-resistant pathogens, responsible for millions of infections each year. In the wake of this crisis, anti-virulence therapeutics targeting bacterial polyphosphate (polyP) homeostasis have been lauded as an attractive alternative to traditional antibiotics. In this work, we show that the small molecule gallein, a known G-protein ßγ subunit modulator, also recently proven to have dual-specificity polyphosphate kinase (PPK) inhibition in Pseudomonas aeruginosa, in turn exhibits broad-spectrum PPK inhibition in other priority pathogens. Gallein treatment successfully attenuated virulence factors of K. pneumoniae and A. baumannii including biofilm formation, surface associated motility, and offered protection against A. baumannii challenge in a Caenorhabditis elegans model of infection. This was highlighted most importantly in the critically understudied A. baumannii, where gallein treatment phenocopied a ppk1 knockout strain of a previously uncharacterized PPK1. Subsequent analysis revealed a unique instance of two functionally and phenotypically distinct PPK1 isoforms encoded by a single bacterium. Finally, gallein was administered to a defined microbial community comprising over 30 commensal species of the human gut microbiome, demonstrating the non-disruptive properties characteristic of anti-virulence treatments as microbial biodiversity was not adversely influenced. Together, these results emphasize that gallein is a promising avenue for the development of broad-spectrum anti-virulence therapeutics.

4.
J Neurosci ; 37(48): 11758-11768, 2017 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-29089436

RESUMO

Peripheral pain signaling reflects a balance of pronociceptive and antinociceptive influences; the contribution by the gastrointestinal microbiota to this balance has received little attention. Disorders, such as inflammatory bowel disease and irritable bowel syndrome, are associated with exaggerated visceral nociceptive actions that may involve altered microbial signaling, particularly given the evidence for bacterial dysbiosis. Thus, we tested whether a community of commensal gastrointestinal bacteria derived from a healthy human donor (microbial ecosystem therapeutics; MET-1) can affect the excitability of male mouse DRG neurons. MET-1 reduced the excitability of DRG neurons by significantly increasing rheobase, decreasing responses to capsaicin (2 µm) and reducing action potential discharge from colonic afferent nerves. The increase in rheobase was accompanied by an increase in the amplitude of voltage-gated K+ currents. A mixture of bacterial protease inhibitors abrogated the effect of MET-1 effects on DRG neuron rheobase. A serine protease inhibitor but not inhibitors of cysteine proteases, acid proteases, metalloproteases, or aminopeptidases abolished the effects of MET-1. The serine protease cathepsin G recapitulated the effects of MET-1 on DRG neurons. Inhibition of protease-activated receptor-4 (PAR-4), but not PAR-2, blocked the effects of MET-1. Furthermore, Faecalibacterium prausnitzii recapitulated the effects of MET-1 on excitability of DRG neurons. We conclude that serine proteases derived from commensal bacteria can directly impact the excitability of DRG neurons, through PAR-4 activation. The ability of microbiota-neuronal interactions to modulate afferent signaling suggests that therapies that induce or correct microbial dysbiosis may impact visceral pain.SIGNIFICANCE STATEMENT Commercially available probiotics have the potential to modify visceral pain. Here we show that secretory products from gastrointestinal microbiota derived from a human donor signal to DRG neurons. Their secretory products contain serine proteases that suppress excitability via activation of protease-activated receptor-4. Moreover, from this community of commensal microbes, Faecalibacterium prausnitzii strain 16-6-I 40 fastidious anaerobe agar had the greatest effect. Our study suggests that therapies that induce or correct microbial dysbiosis may affect the excitability of primary afferent neurons, many of which are nociceptive. Furthermore, identification of the bacterial strains capable of suppressing sensory neuron excitability, and their mechanisms of action, may allow therapeutic relief for patients with gastrointestinal diseases associated with pain.


Assuntos
Gânglios Espinais/enzimologia , Microbioma Gastrointestinal/fisiologia , Granzimas/administração & dosagem , Neurônios/enzimologia , Simbiose/fisiologia , Animais , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/microbiologia , Peptídeo Hidrolases/administração & dosagem , Simbiose/efeitos dos fármacos
5.
J Gastroenterol ; 52(4): 452-465, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27329502

RESUMO

BACKGROUND: A defined Microbial Ecosystem Therapeutic (MET-1, or "RePOOPulate") derived from the feces of a healthy volunteer can cure recurrent C. difficile infection (rCDI) in humans. The mechanisms of action whereby healthy microbiota protect against rCDI remain unclear. Since C. difficile toxins are largely responsible for the disease pathology of CDI, we hypothesized that MET-1 exerts its protective effects by inhibiting the effects of these toxins on the host. METHODS: A combination of in vivo (antibiotic-associated mouse model of C. difficile colitis, mouse ileal loop model) and in vitro models (FITC-phalloidin staining, F actin Western blots and apoptosis assay in Caco2 cells, transepithelial electrical resistance measurements in T84 cells) were employed. RESULTS: MET-1 decreased both local and systemic inflammation in infection and decreased both the cytotoxicity and the amount of TcdA detected in stool, without an effect on C. difficile viability. MET-1 protected against TcdA-mediated damage in a murine ileal loop model. MET-1 protected the integrity of the cytoskeleton in cells treated with purified TcdA, as indicated by FITC-phalloidin staining, F:G actin assays and preservation of transepithelial electrical resistance. Finally, co-incubation of MET-1 with purified TcdA resulted in decreased detectable TcdA by Western blot analysis. CONCLUSIONS: MET-1 intestinal microbiota confers protection against C. difficile and decreases C. difficile-mediated inflammation through its protective effects against C. difficile toxins, including enhancement of host barrier function and degradation of TcdA. The effect of MET-1 on C. difficile viability seems to offer little, if any, contribution to its protective effects on the host.


Assuntos
Toxinas Bacterianas/antagonistas & inibidores , Terapia Biológica/métodos , Clostridioides difficile/crescimento & desenvolvimento , Enterocolite Pseudomembranosa/prevenção & controle , Enterotoxinas/antagonistas & inibidores , Microbioma Gastrointestinal , Animais , Toxinas Bacterianas/metabolismo , Células CACO-2 , Clostridioides difficile/isolamento & purificação , Citoesqueleto/patologia , Modelos Animais de Doenças , Enterocolite Pseudomembranosa/microbiologia , Enterocolite Pseudomembranosa/patologia , Enterotoxinas/metabolismo , Fezes/química , Fezes/citologia , Fezes/microbiologia , Fibroblastos/patologia , Humanos , Camundongos Endogâmicos C57BL
6.
Gut Microbes ; 7(4): 353-363, 2016 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-27176179

RESUMO

Using a murine Salmonella model of colitis, we recently reported that mice receiving a community of defined gut microbiota (MET-1) lost less weight, had reduced systemic inflammation and splenic S. typhimurium infection, and decreased neutrophil infiltration in the cecum, compared to vehicle controls. In addition, animals receiving MET-1 exhibited preserved tight junction protein expression (Zonula occludens-1, claudin-1), suggesting important effects on barrier function. In this addendum, we describe additional in vitro experiments examining effects of MET-1, as well as in vivo experiments demonstrating that MET-1 is protective in a DSS model of colitis after administration of antibiotics. Placed in the context of our findings and those of others, we discuss differences in our findings between the Salmonella colitis and DSS colitis models, provide speculation as to which bacteria may be important in the protective effects of MET-1, and discuss potential implications for other GI diseases such as IBD.


Assuntos
Infecções por Clostridium/microbiologia , Colite/microbiologia , Microbioma Gastrointestinal , Mucosa Intestinal/microbiologia , Animais , Clostridioides difficile/fisiologia , Infecções por Clostridium/terapia , Colite/terapia , Humanos , Camundongos , Camundongos Endogâmicos C57BL
7.
Sci Rep ; 5: 16094, 2015 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-26531327

RESUMO

Salmonella typhimurium is a major cause of diarrhea and causes significant morbidity and mortality worldwide, and perturbations of the gut microbiota are known to increase susceptibility to enteric infections. The purpose of this study was to investigate whether a Microbial Ecosystem Therapeutic (MET-1) consisting of 33 bacterial strains, isolated from human stool and previously used to cure patients with recurrent Clostridium difficile infection, could also protect against S. typhimurium disease. C57BL/6 mice were pretreated with streptomycin prior to receiving MET-1 or control, then gavaged with S. typhimurium. Weight loss, serum cytokine levels, and S. typhimurium splenic translocation were measured. NF-κB nuclear staining, neutrophil accumulation, and localization of tight junction proteins (claudin-1, ZO-1) were visualized by immunofluorescence. Infected mice receiving MET-1 lost less weight, had reduced serum cytokines, reduced NF-κB nuclear staining, and decreased neutrophil infiltration in the cecum. MET-1 also preserved cecum tight junction protein expression, and reduced S. typhimurium translocation to the spleen. Notably, MET-1 did not decrease CFUs of Salmonella in the intestine. MET-1 may attenuate systemic infection by preserving tight junctions, thereby inhibiting S. typhimurium from gaining access to the systemic circulation. We conclude that MET-1 may be protective against enteric infections besides C. difficile infection.


Assuntos
Bactérias/crescimento & desenvolvimento , Colite/terapia , Intestinos/microbiologia , Microbiota , Salmonelose Animal/terapia , Animais , Bactérias/genética , Bactérias/isolamento & purificação , Peso Corporal , Ceco/metabolismo , Claudina-1/metabolismo , Colite/microbiologia , Colite/patologia , Citocinas/sangue , Modelos Animais de Doenças , Fezes/microbiologia , Humanos , Mucosa Intestinal/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Mucinas/metabolismo , NF-kappa B/metabolismo , Neutrófilos/imunologia , Filogenia , RNA Ribossômico 16S/química , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Salmonelose Animal/microbiologia , Salmonelose Animal/patologia , Salmonella typhimurium/crescimento & desenvolvimento , Salmonella typhimurium/patogenicidade , Análise de Sequência de DNA , Baço/microbiologia , Junções Íntimas/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Proteína da Zônula de Oclusão-1/metabolismo
8.
Arterioscler Thromb Vasc Biol ; 27(9): 2030-6, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17569884

RESUMO

OBJECTIVES: The purpose of this study was to identify genetic variants associated with severe coronary artery disease (CAD). METHODS AND RESULTS: We used 3 case-control studies of white subjects whose severity of CAD was assessed by angiography. The first 2 studies were used to generate hypotheses that were then tested in the third study. We tested 12,077 putative functional single nucleotide polymorphisms (SNPs) in Study 1 (781 cases, 603 controls) and identified 302 SNPs nominally associated with severe CAD. Testing these 302 SNPs in Study 2 (471 cases, 298 controls), we found 5 (in LPA, CALM1, HAP1, AP3B1, and ABCG2) were nominally associated with severe CAD and had the same risk alleles in both studies. We then tested these 5 SNPs in Study 3 (554 cases, 373 controls). We found 1 SNP that was associated with severe CAD: LPA I4399M (rs3798220). LPA encodes apolipoprotein(a), a component of lipoprotein(a). I4399M is located in the protease-like domain of apolipoprotein(a). Compared with noncarriers, carriers of the 4399M risk allele (2.7% of controls) had an adjusted odds ratio for severe CAD of 3.14 (confidence interval 1.51 to 6.56), and had 5-fold higher median plasma lipoprotein(a) levels (P=0.003). CONCLUSIONS: The LPA I4399M SNP is associated with severe CAD and plasma lipoprotein(a) levels.


Assuntos
Apoproteína(a)/genética , Doença da Artéria Coronariana/genética , Predisposição Genética para Doença/genética , Polimorfismo de Nucleotídeo Único/genética , Idoso , Estudos de Casos e Controles , Feminino , Frequência do Gene , Humanos , Masculino , Pessoa de Meia-Idade
9.
Am J Kidney Dis ; 49(3): 432-9, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17336705

RESUMO

BACKGROUND: Subclinical vitamin K deficiency increasingly is associated with extraosseous calcification in healthy adults. Nondietary determinants of vitamin K status include apolipoprotein E (apoE) genotype, which may influence vitamin K transport to peripheral tissues. METHODS: Serum phylloquinone concentrations and percentage of uncarboxyated osteocalcin (%ucOC) were measured by means of high-performance liquid chromatography and radioimmunoassay in 142 hemodialysis patients, respectively. ApoE phenotype was determined by means of isoelectric focusing of delipidated serum samples and Western blot analysis. Clinical and laboratory data were obtained by using chart review. RESULTS: Mean age was 62.6 +/- 14.8 (SD) years. Mean phylloquinone level was 0.99 +/- 1.12 nmol/L; 29% of patients had levels less than 0.4 nmol/L. There was no association between phylloquinone level and %ucOC. There were positive correlations between phylloquinone and total cholesterol (P = 0.017), triglyceride (P = 0.022), and ionized calcium levels (P = 0.019). There was a negative correlation between phylloquinone level and dialysis adequacy (P = 0.002). Mean %ucOC was 51.1% +/- 25.8%, and 93% of subjects had values greater than 20%. There were positive correlations between %ucOC and dialysis vintage (P < 0.001), phosphate level (P < 0.001), parathyroid hormone level (P < 0.001), albumin level (P = 0.035), and ionized calcium level (P = 0.046). Seventeen percent of patients were apoE4. Mean %ucOC was significantly greater in apoE4 carriers compared with all other apoE phenotypes (60.1% +/- 28.4% versus 47.8% +/- 24.4%; P = 0.035). In multiple regression analysis with phylloquinone level forced in, independent predictors of %ucOC were phosphate level, dialysis vintage, parathyroid hormone level, and apoE4. CONCLUSION: These data indicate suboptimal vitamin K status in hemodialysis patients, shown by low phylloquinone concentrations and high %ucOC in 29% and 93% of subjects, respectively. The apoE4 allele influences osteocalcin gamma-carboxylation in hemodialysis patients.


Assuntos
Diálise Renal/efeitos adversos , Deficiência de Vitamina K/epidemiologia , Deficiência de Vitamina K/metabolismo , Idoso , Alelos , Apolipoproteínas E/genética , Apolipoproteínas E/fisiologia , Transporte Biológico/fisiologia , Estudos de Coortes , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Osteocalcina/metabolismo , Fenótipo , Análise de Regressão , Vitamina K 1/sangue , Deficiência de Vitamina K/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA