Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Anim Breed Genet ; 137(2): 245-259, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31621116

RESUMO

A multivariate model was developed and used to estimate genetic parameters of body weight (BW) at 1-6 weeks of age of broilers raised in a commercial environment. The development of model was based on the predictive ability of breeding values evaluated from a cross-validation procedure that relied on half-sib correlation. The multivariate model accounted for heterogeneous variances between sexes through standardization applied to male and female BWs differently. It was found that the direct additive genetic, permanent environmental maternal and residual variances for BW increased drastically as broilers aged. The drastic increase in variances over weeks of age was mainly due to scaling effects. The ratio of the permanent environmental maternal variance to phenotypic variance decreased gradually with increasing age. Heritability of BW traits ranged from 0.28 to 0.33 at different weeks of age. The direct genetic effects on consecutive weekly BWs had high genetic correlations (0.85-0.99), but the genetic correlations between early and late BWs were low (0.32-0.57). The difference in variance components between sexes increased with increasing age. In conclusion, the permanent environmental maternal effect on broiler chicken BW decreased with increasing age from weeks 1 to 6. Potential bias of the model that considered identical variances for sexes could be reduced when heterogeneous variances between sexes are accounted for in the model.


Assuntos
Peso Corporal/genética , Galinhas/crescimento & desenvolvimento , Galinhas/genética , Animais , Cruzamento , Feminino , Variação Genética , Masculino , Herança Materna , Modelos Genéticos , Modelos Estatísticos , Herança Multifatorial , Fenótipo , Característica Quantitativa Herdável
2.
Genet Sel Evol ; 50(1): 52, 2018 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-30390619

RESUMO

BACKGROUND: A breeding program for commercial broiler chicken that is carried out under strict biosecure conditions can show reduced genetic gain due to genotype by environment interactions (G × E) between bio-secure (B) and commercial production (C) environments. Accuracy of phenotype-based best linear unbiased prediction of breeding values of selection candidates using sib-testing in C is low. Genomic prediction based on dense genetic markers may improve accuracy of selection. Stochastic simulation was used to explore the benefits of genomic selection in breeding schemes for broiler chicken that include birds in both B and C for assessment of phenotype. RESULTS: When genetic correlations ([Formula: see text]) between traits measured in B and C were equal to 0.5 and 0.7, breeding schemes with 15, 30 and 45% of birds assessed in C resulted in higher genetic gain for performance in C compared to those without birds in C. The optimal proportion of birds phenotyped in C for genetic gain was 30%. When the proportion of birds in C was optimal and genotyping effort was limited, allocating 30% of the genotyping effort to birds in C was also the optimal genotyping strategy for genetic gain. When [Formula: see text] was equal to 0.9, genetic gain for performance in C was not improved with birds in C compared to schemes without birds in C. Increasing the heritability of traits assessed in C increased genetic gain significantly. Rates of inbreeding decreased when the proportion of birds in C increased because of a lower selection intensity among birds retained in B and a reduction in the probability of co-selecting close relatives. CONCLUSIONS: If G × E interactions ([Formula: see text] of 0.5 and 0.7) are strong, a genomic selection scheme in which 30% of the birds hatched are phenotyped in C has larger genetic gain for performance in C compared to phenotyping all birds in B. Rates of inbreeding decreased as the proportion of birds moved to C increased from 15 to 45%.


Assuntos
Cruzamento/métodos , Galinhas/genética , Interação Gene-Ambiente , Seleção Genética , Criação de Animais Domésticos/métodos , Animais , Cruzamento/normas , Modelos Genéticos , Característica Quantitativa Herdável
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA