Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Viruses ; 13(10)2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34696437

RESUMO

The 2016 Zika virus (ZIKV) epidemic illustrates the impact of flaviviruses as emerging human pathogens. For unknown reasons, ZIKV replicates more efficiently in neural progenitor cells (NPCs) than in postmitotic neurons. Here, we identified host factors used by ZIKV using the NCI-60 library of cell lines and COMPARE analysis, and cross-analyzed this library with two other libraries of host factors with importance for ZIKV infection. We identified BAF45b, a subunit of the BAF (Brg1/Brm-associated factors) protein complexes that regulate differentiation of NPCs to post-mitotic neurons. ZIKV (and other flaviviruses) infected HAP1 cells deficient in expression of BAF45b and other BAF subunits less efficiently than wildtype (WT) HAP1 cells. We concluded that subunits of the BAF complex are important for infection of ZIKV and other flavivirus. Given their function in cell and tissue differentiation, such regulators may be important determinants of tropism and pathogenesis of arthropod-borne flaviviruses.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/metabolismo , Infecção por Zika virus/metabolismo , Zika virus/metabolismo , Aedes/virologia , Animais , Linhagem Celular , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/fisiologia , Flavivirus , Haploidia , Interações entre Hospedeiro e Microrganismos/genética , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia , Replicação Viral/fisiologia , Zika virus/patogenicidade , Infecção por Zika virus/virologia
2.
RNA ; 21(8): 1454-68, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26089326

RESUMO

The in vivo assembly of ribosomal subunits requires assistance by maturation proteins that are not part of mature ribosomes. One such protein, RbfA, associates with the 30S ribosomal subunits. Loss of RbfA causes cold sensitivity and defects of the 30S subunit biogenesis and its overexpression partially suppresses the dominant cold sensitivity caused by a C23U mutation in the central pseudoknot of 16S rRNA, a structure essential for ribosome function. We have isolated suppressor mutations that restore partially the growth of an RbfA-lacking strain. Most of the strongest suppressor mutations alter one out of three distinct positions in the carboxy-terminal domain of ribosomal protein S5 (S5) in direct contact with helix 1 and helix 2 of the central pseudoknot. Their effect is to increase the translational capacity of the RbfA-lacking strain as evidenced by an increase in polysomes in the suppressed strains. Overexpression of RimP, a protein factor that along with RbfA regulates formation of the ribosome's central pseudoknot, was lethal to the RbfA-lacking strain but not to a wild-type strain and this lethality was suppressed by the alterations in S5. The S5 mutants alter translational fidelity but these changes do not explain consistently their effect on the RbfA-lacking strain. Our genetic results support a role for the region of S5 modified in the suppressors in the formation of the central pseudoknot in 16S rRNA.


Assuntos
Bactérias/crescimento & desenvolvimento , RNA Ribossômico 16S/metabolismo , Proteínas Ribossômicas/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Genes Letais , Modelos Moleculares , Mutação , Estrutura Secundária de Proteína , RNA Bacteriano/metabolismo , Proteínas Ribossômicas/química , Proteínas Ribossômicas/genética , Subunidades Ribossômicas Menores de Bactérias/metabolismo
3.
J Bacteriol ; 194(16): 4377-85, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22707705

RESUMO

Listeria monocytogenes, a Gram-positive food-borne human pathogen, is able to grow at temperatures close to 0°C and is thus of great concern for the food industry. In this work, we investigated the physiological role of one DExD-box RNA helicase in Listeria monocytogenes. The RNA helicase Lmo1722 was required for optimal growth at low temperatures, whereas it was dispensable at 37°C. A Δlmo1722 strain was less motile due to downregulation of the major subunit of the flagellum, FlaA, caused by decreased flaA expression. By ribosomal fractionation experiments, it was observed that Lmo1722 was mainly associated with the 50S subunit of the ribosome. Absence of Lmo1722 decreased the fraction of 50S ribosomal subunits and mature 70S ribosomes and affected the processing of the 23S precursor rRNA. The ribosomal profile could be restored to wild-type levels in a Δlmo1722 strain expressing Lmo1722. Interestingly, the C-terminal part of Lmo1722 was redundant for low-temperature growth, motility, 23S rRNA processing, and appropriate ribosomal maturation. However, Lmo1722 lacking the C terminus showed a reduced affinity for the 50S and 70S fractions, suggesting that the C terminus is important for proper guidance of Lmo1722 to the 50S subunit. Taken together, our results show that the Listeria RNA helicase Lmo1722 is essential for growth at low temperatures, motility, and rRNA processing and is important for ribosomal maturation, being associated mainly with the 50S subunit of the ribosome.


Assuntos
Listeria monocytogenes/enzimologia , Listeria monocytogenes/crescimento & desenvolvimento , Mapeamento de Interação de Proteínas , RNA Helicases/metabolismo , Processamento Pós-Transcricional do RNA , RNA Ribossômico 23S/metabolismo , Deleção de Genes , Teste de Complementação Genética , Listeria monocytogenes/metabolismo , Locomoção , Ligação Proteica , RNA Helicases/genética , Temperatura
4.
J Bacteriol ; 193(16): 4113-22, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21685293

RESUMO

The RimM protein in Escherichia coli is important for the in vivo maturation of 30S ribosomal subunits and a ΔrimM mutant grows poorly due to assembly and translational defects. These deficiencies are suppressed partially by mutations that increase the synthesis of another assembly protein, RbfA, encoded by the metY-nusA-infB operon. Among these suppressors are mutations in nusA that impair the NusA-mediated negative-feedback regulation at internal intrinsic transcriptional terminators of the metY-nusA-infB operon. We describe here the isolation of two new mutations, one in rpoB and one in rpoC (encoding the ß and ß' subunits of the RNA polymerase, respectively), that increase the synthesis of RbfA by preventing NusA from stimulating termination at the internal intrinsic transcriptional terminators of the metY-nusA-infB operon. The rpoB2063 mutation changed the isoleucine in position 905 of the ß flap-tip helix to a serine, while the rpoC2064 mutation duplicated positions 415 to 416 (valine-isoleucine) at the base of the ß' dock domain. These findings support previously published in vitro results, which have suggested that the ß flap-tip helix and ß' dock domain at either side of the RNA exit tunnel mediate the binding to NusA during transcriptional pausing and termination.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Óperon/fisiologia , Fatores de Alongamento de Peptídeos/metabolismo , Fator de Iniciação 2 em Procariotos/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Mutação , Óperon/genética , Fatores de Alongamento de Peptídeos/genética , Fator de Iniciação 2 em Procariotos/genética , Estrutura Terciária de Proteína , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica/fisiologia , Fatores de Elongação da Transcrição
5.
J Mol Biol ; 398(1): 1-7, 2010 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-20188109

RESUMO

Ribosome biogenesis is facilitated by a growing list of assembly cofactors, including helicases, GTPases, chaperones, and other proteins, but the specific functions of many of these assembly cofactors are still unclear. The effect of three assembly cofactors on 30S ribosome assembly was determined in vitro using a previously developed mass-spectrometry-based method that monitors the rRNA binding kinetics of ribosomal proteins. The essential GTPase Era caused several late-binding proteins to bind rRNA faster when included in a 30S reconstitution. RimP enabled faster binding of S9 and S19 and inhibited the binding of S12 and S13, perhaps by blocking those proteins' binding sites. RimM caused proteins S5 and S12 to bind dramatically faster. These quantitative kinetic data provide important clues about the roles of these assembly cofactors in the mechanism of 30S biogenesis.


Assuntos
GTP Fosfo-Hidrolases/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Proteínas de Bactérias/metabolismo , Sítios de Ligação/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Cinética , Modelos Moleculares , Ligação Proteica/genética , Estrutura Terciária de Proteína/genética , RNA Bacteriano/metabolismo , RNA Ribossômico/análise , RNA Ribossômico 16S/metabolismo , Proteínas Ribossômicas/química , Subunidades Ribossômicas Menores de Bactérias
6.
J Mol Biol ; 386(3): 742-53, 2009 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-19150615

RESUMO

The in vivo assembly of ribosomal subunits requires assistance by auxiliary proteins that are not part of mature ribosomes. More such assembly proteins have been identified for the assembly of the 50S than for the 30S ribosomal subunit. Here, we show that the RimP protein (formerly YhbC or P15a) is important for the maturation of the 30S subunit. A rimP deletion (DeltarimP135) mutant in Escherichia coli showed a temperature-sensitive growth phenotype as demonstrated by a 1.2-, 1.5-, and 2.5-fold lower growth rate at 30, 37, and 44 degrees C, respectively, compared to a wild-type strain. The mutant had a reduced amount of 70S ribosomes engaged in translation and showed a corresponding increase in the amount of free ribosomal subunits. In addition, the mutant showed a lower ratio of free 30S to 50S subunits as well as an accumulation of immature 16S rRNA compared to a wild-type strain, indicating a deficiency in the maturation of the 30S subunit. All of these effects were more pronounced at higher temperatures. RimP was found to be associated with free 30S subunits but not with free 50S subunits or with 70S ribosomes. The slow growth of the rimP deletion mutant was not suppressed by increased expression of any other known 30S maturation factor.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Subunidades Ribossômicas Menores de Bactérias/metabolismo , Citoplasma/química , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/genética , Deleção de Genes , Biossíntese de Proteínas , RNA Ribossômico 16S/metabolismo , Subunidades Ribossômicas Menores de Bactérias/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA