Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biotechnol Biofuels Bioprod ; 16(1): 165, 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37924121

RESUMO

Biogas from anaerobic digestion is a versatile energy carrier that can be upgraded to compressed biomethane gas (CBG) as a renewable and sustainable alternative to natural gas. Organic residues and energy crops are predicted to be major sources of bioenergy production in the future. Pre-treatment can reduce the recalcitrance of lignocellulosic energy crops such as Salix to anaerobic digestion, making it a potential biogas feedstock. This lignocellulosic material can be co-digested with animal manure, which has the complementary effect of increasing volumetric biogas yield. Salix varieties exhibit variations in yield, composition and biomethane potential values, which can have a significant effect on the overall biogas production system. This study assessed the impact of Salix varietal differences on the overall mass and energy balance of a co-digestion system using steam pre-treated Salix biomass and dairy manure (DaM) to produce CBG as the final product. Six commercial Salix varieties cultivated under unfertilised and fertilised conditions were compared. Energy and mass flows along this total process chain, comprising Salix cultivation, steam pre-treatment, biogas production and biogas upgrading to CBG, were evaluated. Two scenarios were considered: a base scenario without heat recovery and a scenario with heat recovery. The results showed that Salix variety had a significant effect on energy output-input ratio (R), with R values in the base scenario of 1.57-1.88 and in the heat recovery scenario of 2.36-2.94. In both scenarios, unfertilised var. Tordis was the best energy performer, while the fertilised var. Jorr was the worst. Based on this energy performance, Salix could be a feasible feedstock for co-digestion with DaM, although its R value was at the lower end of the range reported previously for energy crops.

2.
Appl Microbiol Biotechnol ; 106(13-16): 5317-5333, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35799068

RESUMO

Microbial community development within an anaerobic trickle bed reactor (TBR) during methanation of syngas (56% H2, 30% CO, 14% CO2) was investigated using three different nutrient media: defined nutrient medium (241 days), diluted digestate from a thermophilic co-digestion plant operating with food waste (200 days) and reject water from dewatered digested sewage sludge at a wastewater treatment plant (220 days). Different TBR operating periods showed slightly different performance that was not clearly linked to the nutrient medium, as all proved suitable for the methanation process. During operation, maximum syngas load was 5.33 L per L packed bed volume (pbv) & day and methane (CH4) production was 1.26 L CH4/Lpbv/d. Microbial community analysis with Illumina Miseq targeting 16S rDNA revealed high relative abundance (20-40%) of several potential syngas and acetate consumers within the genera Sporomusa, Spirochaetaceae, Rikenellaceae and Acetobacterium during the process. These were the dominant taxa except in a period with high flow rate of digestate from the food waste plant. The dominant methanogen in all periods was a member of the genus Methanobacterium, while Methanosarcina was also observed in the carrier community. As in reactor effluent, the dominant bacterial genus in the carrier was Sporomusa. These results show that syngas methanation in TBR can proceed well with different nutrient sources, including undefined medium of different origins. Moreover, the dominant syngas community remained the same over time even when non-sterilised digestates were used as nutrient medium. KEY POINTS: • Independent of nutrient source, syngas methanation above 1 L/Lpbv/D was achieved. • Methanobacterium and Sporomusa were dominant genera throughout the process. • Acetate conversion proceeded via both methanogenesis and syntrophic acetate oxidation.


Assuntos
Microbiota , Eliminação de Resíduos , Acetatos , Anaerobiose , Reatores Biológicos/microbiologia , Alimentos , Metano , Methanosarcina , Nutrientes , Esgotos/microbiologia
3.
Microorganisms ; 6(3)2018 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-30081593

RESUMO

This study investigated whether biogas reactor performance, including microbial community development, in response to a change in substrate composition is influenced by initial inoculum source. For the study, reactors previously operated with the same grass⁻manure mixture for more than 120 days and started with two different inocula were used. These reactors initially showed great differences depending on inoculum source, but eventually showed similar performance and overall microbial community structure. At the start of the present experiment, the substrate was complemented with milled feed wheat, added all at once or divided into two portions. The starting hypothesis was that process performance depends on initial inoculum source and microbial diversity, and thus that reactor performance is influenced by the feeding regime. In response to the substrate change, all reactors showed increases and decreases in volumetric and specific methane production, respectively. However, specific methane yield and development of the microbial community showed differences related to the initial inoculum source, confirming the hypothesis. However, the different feeding regimes had only minor effects on process performance and overall community structure, but still induced differences in the cellulose-degrading community and in cellulose degradation.

4.
Water Sci Technol ; 76(3-4): 983-991, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28799944

RESUMO

Anaerobic digestion is today internationally acknowledged as an environmentally sound process for energy and nutrient recovery from organic wastes, and it is the dominant sludge treatment technology in most countries' wastewater treatment plants. Laboratory- or pilot-scale experiments are commonly used as a first step to investigate the potential of new ideas or to confirm research hypothesis before confirmation in full-scale. The objectives of this study were to investigate transferability of methane yield assessments between laboratory- and full-scale, and to compare the influence of experimental uncertainties on experimental power in parallel continuous digester experiments for the two scales. Both batch experiment data (used in a simple equation), as well as continuous laboratory experiments, could be used to predict full-scale methane yield with a high accuracy (<5% difference). Full-scale digesters significantly outperformed hand-fed laboratory digesters in terms of experimental power regarding relative differences in methane yield between two digesters operated in parallel. However, to justify costly long-term continuous laboratory-scale experiments with sufficient experimental power and potentially high transferability, resources also have to be allocated to measures that ensure a high data quality from full-scale reference facilities.


Assuntos
Reatores Biológicos , Esgotos , Anaerobiose , Metano/química , Metano/metabolismo , Águas Residuárias/química
5.
Artigo em Inglês | MEDLINE | ID: mdl-28066762

RESUMO

Biomethane, as a replacement for natural gas, reduces the use of fossil-based sources and supports the intended change from fossil to bio-based industry. The study assessed different biomethane utilization routes for production of methanol, dimethyl ether (DME), and ammonia, as fuel or platform chemicals and combined heat and power (CHP). Energy efficiency and environmental impacts of the different pathways was studied in a life cycle perspective covering the technical system from biomass production to the end product. Among the routes studied, CHP had the highest energy balance and least environmental impact. DME and methanol performed competently in energy balance and environmental impacts in comparison with the ammonia route. DME had the highest total energy output, as fuel, heat, and steam, among the different routes studied. Substituting the bio-based routes for fossil-based alternatives would give a considerable reduction in environmental impacts such as global warming potential and acidification potential for all routes studied, especially CHP, DME, and methanol. Eutrophication potential was mainly a result of biomass and biomethane production, with marginal differences between the different routes.

6.
Bioresour Technol ; 98(1): 104-11, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16480862

RESUMO

Process liquid recirculation initially stimulated one-phase anaerobic digestion of alfalfa silage in two semi-continuously fed and stirred tank reactors. Thus, with increased pH, alkalinity and stability it was possible to increase the organic loading rate to 3 g VS L(-1) d(-1), as compared to 2.25 g VS L(-1) d(-1) in a control reactor without recirculation. However, the recirculation of liquid eventually caused an accumulation of organic and inorganic substances, leading to an inhibition of hydrolysis and methanogenesis. This inhibition of microbial activity was prevented in one of the processes by replacing 50% of the recirculated process liquid with water during the second half of the operation period. A multiple linear regression model of principal components using seven input variables explained the variance in output variables nearly as well as the original model using all 23 measured input variables. The results show that it is necessary to adjust the degree of liquid recirculation to reach an optimal process.


Assuntos
Medicago sativa/metabolismo , Silagem , Anaerobiose
7.
Bioresour Technol ; 89(3): 237-43, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12798113

RESUMO

This study characterizes the response of the microbial communities of a laboratory-scale mesophilic biogas process, fed with a synthetic substrate based on cellulose and egg albumin, to single pulses of glucose overloading (15 or 25 times the daily feed based on VS). The microbial biomass and community structure were determined from analyses of membrane phospholipids. The ratio between phospholipid fatty acids (PLFAs; eubacteria and eucaryotes) and di-ethers (PLEL; archaea) suggested that methanogens constituted 4-8% of the microbial biomass. The glucose addition resulted in transient increases in the total biomass of eubacteria while there were only small changes in community structure. The total gas production rate increased, while the relative methane content of the biogas and the alkalinity decreased. However, the biomass of methanogens was not affected by the glucose addition. The results show that the microbial communities of biogas processes can respond quickly to changes in the feeding rate. The glucose overload resulted in a transient general stimulation of degradation rates and almost a doubling of eubacterial biomass, although the biomass increase corresponded to only 7% of the glucose C added.


Assuntos
Bactérias Anaeróbias/metabolismo , Reatores Biológicos/microbiologia , Gases/metabolismo , Glucose/metabolismo , Anaerobiose/efeitos dos fármacos , Bactérias Anaeróbias/efeitos dos fármacos , Biodegradação Ambiental , Biomassa , Glucose/farmacologia , Microbiologia Industrial/métodos , Eliminação de Resíduos Líquidos
8.
Appl Biochem Biotechnol ; 109(1-3): 127-38, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12794289

RESUMO

Different mixtures of animal byproducts, other slaughterhouse waste (i.e., rumen, stomach and intestinal content), food waste, and liquid manure were codigested at mesophilic conditions (37 degrees C) at laboratory and pilot scale. Animal byproducts, including blood, represent 70-80% of the total biogas potential from waste generated during slaughter of animals. The total biogas potential from waste generated during slaughter is about 1300 MJ/cattle and about 140 MJ/pig. Fed-batch digestion of pasteurized (70 degrees C, 1 h) animal byproducts resulted in a fourfold increase in biogas yield (1.14 L/g of volatile solids [VS]) compared with nonpasteurized animal byproducts (0.31 L/g of VS). Mixtures with animal byproducts representing 19-38% of the total dry matter were digested in continuous-flow stirred tank reactors at laboratory and pilot scale. Stable processes at organic loading rates (OLRs) exceeding 2.5 g of VS/(L.d) and hydraulic retention times (HRTs) less than 40 d could be obtained with total ammonia nitrogen concentrations (NH4-N + NH3-N) in the range of 4.0-5.0 g/L. After operating one process for more than 1.5 yr at total ammonia nitrogen concentrations >4 g/L, an increase in OLR to 5 g of VS/(L.d) and a decrease in HRT to 22 d was possible without accumulation of volatile fatty acids.


Assuntos
Matadouros , Bactérias Anaeróbias/crescimento & desenvolvimento , Bactérias Anaeróbias/metabolismo , Reatores Biológicos/microbiologia , Metano/metabolismo , Eliminação de Resíduos/métodos , Esgotos/microbiologia , Bactérias Anaeróbias/citologia , Biodegradação Ambiental , Reatores Biológicos/classificação , Técnicas de Cultura de Células/métodos , Divisão Celular , Estudos de Viabilidade , Resíduos Industriais/prevenção & controle , Projetos Piloto , Controle de Qualidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA