Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Mol Biol ; 432(23): 6092-6107, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33058876

RESUMO

The polar organizing protein Z (PopZ) is necessary for the formation of three-dimensional microdomains at the cell poles in Caulobacter crescentus, where it functions as a hub protein that recruits multiple regulatory proteins from the cytoplasm. Although a large portion of the protein is predicted to be natively unstructured, in reconstituted systems PopZ can self-assemble into a macromolecular scaffold that directly binds to at least ten different proteins. Here we report the solution NMR structure of PopZΔ134-177, a truncated form of PopZ that does not self-assemble but retains the ability to interact with heterologous proteins. We show that the unbound form of PopZΔ134-177 is unstructured in solution, with the exception of a small amphipathic α-helix in residues M10-I17, which is included within a highly conserved region near the N-terminal. In applying NMR techniques to map the interactions between PopZΔ134-177 and one of its binding partners, RcdA, we find evidence that the α-helix and adjoining amino acids extending to position E23 serve as the core of the binding motif. Consistent with this, a point mutation at position I17 severely compromises binding. Our results show that a partially structured Molecular Recognition Feature (MoRF) within an intrinsically disordered domain of PopZ contributes to the assembly of polar microdomains, revealing a structural basis for complex network assembly in Alphaproteobacteria that is analogous to those formed by intrinsically disordered hub proteins in other kingdoms.


Assuntos
Proteínas de Bactérias/genética , Proteínas Sanguíneas/genética , Proteínas Intrinsicamente Desordenadas/genética , Conformação Proteica , Proteínas de Bactérias/química , Proteínas Sanguíneas/química , Caulobacter crescentus/genética , Cromossomos Bacterianos/genética , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica/genética , Multimerização Proteica/genética
2.
J Mol Biol ; 432(21): 5765-5783, 2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-32898583

RESUMO

Regulation of photoreceptor phosphodiesterase (PDE6) activity is responsible for the speed, sensitivity, and recovery of the photoresponse during visual signaling in vertebrate photoreceptor cells. It is hypothesized that physiological differences in the light responsiveness of rods and cones may result in part from differences in the structure and regulation of the distinct isoforms of rod and cone PDE6. Although rod and cone PDE6 catalytic subunits share a similar domain organization consisting of tandem GAF domains (GAFa and GAFb) and a catalytic domain, cone PDE6 is a homodimer whereas rod PDE6 consists of two homologous catalytic subunits. Here we provide the x-ray crystal structure of cone GAFab regulatory domain solved at 3.3 Šresolution, in conjunction with chemical cross-linking and mass spectrometric analysis of conformational changes to GAFab induced upon binding of cGMP and the PDE6 inhibitory γ-subunit (Pγ). Ligand-induced changes in cross-linked residues implicate multiple conformational changes in the GAFa and GAFb domains in forming an allosteric communication network. Molecular dynamics simulations of cone GAFab revealed differences in conformational dynamics of the two subunits forming the homodimer and allosteric perturbations on cGMP binding. Cross-linking of Pγ to GAFab in conjunction with solution NMR spectroscopy of isotopically labeled Pγ identified the central polycationic region of Pγ interacting with the GAFb domain. These results provide a mechanistic basis for developing allosteric activators of PDE6 with therapeutic implications for halting the progression of several retinal degenerative diseases.


Assuntos
Proteínas Aviárias/metabolismo , Galinhas/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/metabolismo , Regulação Alostérica , Animais , Proteínas Aviárias/química , Domínio Catalítico , Cristalografia por Raios X , GMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/química , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Domínios Proteicos , Multimerização Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA