Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Nat Immunol ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816617

RESUMO

Rare multipotent stem cells replenish millions of blood cells per second through a time-consuming process, passing through multiple stages of increasingly lineage-restricted progenitors. Although insults to the blood-forming system highlight the need for more rapid blood replenishment from stem cells, established models of hematopoiesis implicate only one mandatory differentiation pathway for each blood cell lineage. Here, we establish a nonhierarchical relationship between distinct stem cells that replenish all blood cell lineages and stem cells that replenish almost exclusively platelets, a lineage essential for hemostasis and with important roles in both the innate and adaptive immune systems. These distinct stem cells use cellularly, molecularly and functionally separate pathways for the replenishment of molecularly distinct megakaryocyte-restricted progenitors: a slower steady-state multipotent pathway and a fast-track emergency-activated platelet-restricted pathway. These findings provide a framework for enhancing platelet replenishment in settings in which slow recovery of platelets remains a major clinical challenge.

2.
bioRxiv ; 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37808769

RESUMO

Generation of mature cells from progenitors requires tight coupling of differentiation and metabolism. During erythropoiesis, erythroblasts are required to massively upregulate globin synthesis then clear extraneous material and enucleate to produce erythrocytes1-3. Nprl3 has remained in synteny with the α-globin genes for >500 million years4, and harbours the majority of the α-globin enhancers5. Nprl3 is a highly conserved inhibitor of mTORC1, which controls cellular metabolism. However, whether Nprl3 itself serves an erythroid role is unknown. Here, we show that Nprl3 is a key regulator of erythroid metabolism. Using Nprl3-deficient fetal liver and adult competitive bone marrow - fetal liver chimeras, we show that NprI3 is required for sufficient erythropoiesis. Loss of Nprl3 elevates mTORC1 signalling, suppresses autophagy and disrupts erythroblast glycolysis and redox control. Human CD34+ progenitors lacking NPRL3 produce fewer enucleated cells and demonstrate dysregulated mTORC1 signalling in response to nutrient availability and erythropoietin. Finally, we show that the α-globin enhancers upregulate NprI3 expression, and that this activity is necessary for optimal erythropoiesis. Therefore, the anciently conserved linkage of NprI3, α-globin and their associated enhancers has enabled coupling of metabolic and developmental control in erythroid cells. This may enable erythropoiesis to adapt to fluctuating nutritional and environmental conditions.

3.
Nat Commun ; 14(1): 6062, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37770432

RESUMO

Hematopoietic stem cells (HSCs) residing in specialized niches in the bone marrow are responsible for the balanced output of multiple short-lived blood cell lineages in steady-state and in response to different challenges. However, feedback mechanisms by which HSCs, through their niches, sense acute losses of specific blood cell lineages remain to be established. While all HSCs replenish platelets, previous studies have shown that a large fraction of HSCs are molecularly primed for the megakaryocyte-platelet lineage and are rapidly recruited into proliferation upon platelet depletion. Platelets normally turnover in an activation-dependent manner, herein mimicked by antibodies inducing platelet activation and depletion. Antibody-mediated platelet activation upregulates expression of Interleukin-1 (IL-1) in platelets, and in bone marrow extracellular fluid in vivo. Genetic experiments demonstrate that rather than IL-1 directly activating HSCs, activation of bone marrow Lepr+ perivascular niche cells expressing IL-1 receptor is critical for the optimal activation of quiescent HSCs upon platelet activation and depletion. These findings identify a feedback mechanism by which activation-induced depletion of a mature blood cell lineage leads to a niche-dependent activation of HSCs to reinstate its homeostasis.


Assuntos
Interleucina-1 , Trombocitopenia , Humanos , Interleucina-1/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Medula Óssea/metabolismo , Megacariócitos , Trombocitopenia/metabolismo
4.
Nat Genet ; 55(9): 1531-1541, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37666991

RESUMO

Understanding the genetic and nongenetic determinants of tumor protein 53 (TP53)-mutation-driven clonal evolution and subsequent transformation is a crucial step toward the design of rational therapeutic strategies. Here we carry out allelic resolution single-cell multi-omic analysis of hematopoietic stem/progenitor cells (HSPCs) from patients with a myeloproliferative neoplasm who transform to TP53-mutant secondary acute myeloid leukemia (sAML). All patients showed dominant TP53 'multihit' HSPC clones at transformation, with a leukemia stem cell transcriptional signature strongly predictive of adverse outcomes in independent cohorts, across both TP53-mutant and wild-type (WT) AML. Through analysis of serial samples, antecedent TP53-heterozygous clones and in vivo perturbations, we demonstrate a hitherto unrecognized effect of chronic inflammation, which suppressed TP53 WT HSPCs while enhancing the fitness advantage of TP53-mutant cells and promoted genetic evolution. Our findings will facilitate the development of risk-stratification, early detection and treatment strategies for TP53-mutant leukemia, and are of broad relevance to other cancer types.


Assuntos
Leucemia , Multiômica , Humanos , Proteínas de Neoplasias , Inflamação/genética , Alelos , Leucemia/genética , Proteína Supressora de Tumor p53/genética
5.
Blood ; 142(19): 1622-1632, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37562000

RESUMO

A critical regulatory role of hematopoietic stem cell (HSC) vascular niches in the bone marrow has been implicated to occur through endothelial niche cell expression of KIT ligand. However, endothelial-derived KIT ligand is expressed in both a soluble and membrane-bound form and not unique to bone marrow niches, and it is also systemically distributed through the circulatory system. Here, we confirm that upon deletion of both the soluble and membrane-bound forms of endothelial-derived KIT ligand, HSCs are reduced in mouse bone marrow. However, the deletion of endothelial-derived KIT ligand was also accompanied by reduced soluble KIT ligand levels in the blood, precluding any conclusion as to whether the reduction in HSC numbers reflects reduced endothelial expression of KIT ligand within HSC niches, elsewhere in the bone marrow, and/or systemic soluble KIT ligand produced by endothelial cells outside of the bone marrow. Notably, endothelial deletion, specifically of the membrane-bound form of KIT ligand, also reduced systemic levels of soluble KIT ligand, although with no effect on stem cell numbers, implicating an HSC regulatory role primarily of soluble rather than membrane KIT ligand expression in endothelial cells. In support of a role of systemic rather than local niche expression of soluble KIT ligand, HSCs were unaffected in KIT ligand deleted bones implanted into mice with normal systemic levels of soluble KIT ligand. Our findings highlight the need for more specific tools to unravel niche-specific roles of regulatory cues expressed in hematopoietic niche cells in the bone marrow.


Assuntos
Células Endoteliais , Fator de Células-Tronco , Camundongos , Animais , Fator de Células-Tronco/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Medula Óssea/metabolismo , Osso e Ossos , Nicho de Células-Tronco , Células da Medula Óssea/metabolismo
7.
J Exp Med ; 218(2)2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33416891

RESUMO

Juvenile myelomonocytic leukemia (JMML) is a poor-prognosis childhood leukemia usually caused by RAS-pathway mutations. The cellular hierarchy in JMML is poorly characterized, including the identity of leukemia stem cells (LSCs). FACS and single-cell RNA sequencing reveal marked heterogeneity of JMML hematopoietic stem/progenitor cells (HSPCs), including an aberrant Lin-CD34+CD38-CD90+CD45RA+ population. Single-cell HSPC index-sorting and clonogenic assays show that (1) all somatic mutations can be backtracked to the phenotypic HSC compartment, with RAS-pathway mutations as a "first hit," (2) mutations are acquired with both linear and branching patterns of clonal evolution, and (3) mutant HSPCs are present after allogeneic HSC transplant before molecular/clinical evidence of relapse. Stem cell assays reveal interpatient heterogeneity of JMML LSCs, which are present in, but not confined to, the phenotypic HSC compartment. RNA sequencing of JMML LSC reveals up-regulation of stem cell and fetal genes (HLF, MEIS1, CNN3, VNN2, and HMGA2) and candidate therapeutic targets/biomarkers (MTOR, SLC2A1, and CD96), paving the way for LSC-directed disease monitoring and therapy in this disease.


Assuntos
Células-Tronco Hematopoéticas/patologia , Leucemia Mielomonocítica Juvenil/patologia , Animais , Biomarcadores Tumorais/genética , Linhagem Celular , Feminino , Humanos , Leucemia Mielomonocítica Juvenil/genética , Masculino , Camundongos , Mutação/genética , Células-Tronco Neoplásicas/patologia , Transdução de Sinais/genética , Regulação para Cima/genética
9.
Haematologica ; 104(11): 2215-2224, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30975913

RESUMO

Somatic mutations in acute myeloid leukemia are acquired sequentially and hierarchically. First, pre-leukemic mutations, such as t(8;21) that encodes AML1-ETO, are acquired within the hematopoietic stem cell (HSC) compartment, while signaling pathway mutations, including KRAS activating mutations, are late events acquired during transformation of leukemic progenitor cells and are rarely detectable in HSC. This raises the possibility that signaling pathway mutations are detrimental to clonal expansion of pre-leukemic HSC. To address this hypothesis, we used conditional genetics to introduce Aml1-ETO and K-RasG12D into murine HSC, either individually or in combination. In the absence of activated Ras, Aml1-ETO-expressing HSC conferred a competitive advantage. However, activated K-Ras had a marked detrimental effect on Aml1-ETO-expressing HSC, leading to loss of both phenotypic and functional HSC. Cell cycle analysis revealed a loss of quiescence in HSC co-expressing Aml1-ETO and K-RasG12D, accompanied by an enrichment in E2F and Myc target gene expression and depletion of HSC self-renewal-associated gene expression. These findings provide a mechanistic basis for the observed absence of KRAS signaling mutations in the pre-malignant HSC compartment.


Assuntos
Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Mutação , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteína 1 Parceira de Translocação de RUNX1/genética , Proteína 1 Parceira de Translocação de RUNX1/metabolismo , Animais , Proliferação de Células/genética , Expressão Gênica , Perfilação da Expressão Gênica , Células-Tronco Hematopoéticas/patologia , Humanos , Camundongos , Camundongos Transgênicos , Modelos Animais , Modelos Biológicos , Lesões Pré-Cancerosas/genética , Lesões Pré-Cancerosas/metabolismo
10.
Nature ; 554(7690): 106-111, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29298288

RESUMO

Rare multipotent haematopoietic stem cells (HSCs) in adult bone marrow with extensive self-renewal potential can efficiently replenish all myeloid and lymphoid blood cells, securing long-term multilineage reconstitution after physiological and clinical challenges such as chemotherapy and haematopoietic transplantations. HSC transplantation remains the only curative treatment for many haematological malignancies, but inefficient blood-lineage replenishment remains a major cause of morbidity and mortality. Single-cell transplantation has uncovered considerable heterogeneity among reconstituting HSCs, a finding that is supported by studies of unperturbed haematopoiesis and may reflect different propensities for lineage-fate decisions by distinct myeloid-, lymphoid- and platelet-biased HSCs. Other studies suggested that such lineage bias might reflect generation of unipotent or oligopotent self-renewing progenitors within the phenotypic HSC compartment, and implicated uncoupling of the defining HSC properties of self-renewal and multipotency. Here we use highly sensitive tracking of progenitors and mature cells of the megakaryocyte/platelet, erythroid, myeloid and B and T cell lineages, produced from singly transplanted HSCs, to reveal a highly organized, predictable and stable framework for lineage-restricted fates of long-term self-renewing HSCs. Most notably, a distinct class of HSCs adopts a fate towards effective and stable replenishment of a megakaryocyte/platelet-lineage tree but not of other blood cell lineages, despite sustained multipotency. No HSCs contribute exclusively to any other single blood-cell lineage. Single multipotent HSCs can also fully restrict towards simultaneous replenishment of megakaryocyte, erythroid and myeloid lineages without executing their sustained lymphoid lineage potential. Genetic lineage-tracing analysis also provides evidence for an important role of platelet-biased HSCs in unperturbed adult haematopoiesis. These findings uncover a limited repertoire of distinct HSC subsets, defined by a predictable and hierarchical propensity to adopt a fate towards replenishment of a restricted set of blood lineages, before loss of self-renewal and multipotency.


Assuntos
Linhagem da Célula , Hematopoese , Células-Tronco Hematopoéticas/citologia , Células-Tronco Multipotentes/citologia , Animais , Antígenos CD34 , Linfócitos B/citologia , Plaquetas/citologia , Antígeno CD48/deficiência , Autorrenovação Celular , Células Eritroides/citologia , Feminino , Células-Tronco Hematopoéticas/metabolismo , Masculino , Megacariócitos/citologia , Camundongos , Células-Tronco Multipotentes/metabolismo , Células Mieloides/citologia , Membro 1 da Família de Moléculas de Sinalização da Ativação Linfocitária/metabolismo , Linfócitos T/citologia
11.
Nat Med ; 23(6): 692-702, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28504724

RESUMO

Recent advances in single-cell transcriptomics are ideally placed to unravel intratumoral heterogeneity and selective resistance of cancer stem cell (SC) subpopulations to molecularly targeted cancer therapies. However, current single-cell RNA-sequencing approaches lack the sensitivity required to reliably detect somatic mutations. We developed a method that combines high-sensitivity mutation detection with whole-transcriptome analysis of the same single cell. We applied this technique to analyze more than 2,000 SCs from patients with chronic myeloid leukemia (CML) throughout the disease course, revealing heterogeneity of CML-SCs, including the identification of a subgroup of CML-SCs with a distinct molecular signature that selectively persisted during prolonged therapy. Analysis of nonleukemic SCs from patients with CML also provided new insights into cell-extrinsic disruption of hematopoiesis in CML associated with clinical outcome. Furthermore, we used this single-cell approach to identify a blast-crisis-specific SC population, which was also present in a subclone of CML-SCs during the chronic phase in a patient who subsequently developed blast crisis. This approach, which might be broadly applied to any malignancy, illustrates how single-cell analysis can identify subpopulations of therapy-resistant SCs that are not apparent through cell-population analysis.


Assuntos
Crise Blástica/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Células-Tronco Neoplásicas/metabolismo , Análise de Célula Única , Adulto , Idoso , Imunoprecipitação da Cromatina , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Feminino , Citometria de Fluxo , Biblioteca Gênica , Genes abl/genética , Humanos , Hibridização in Situ Fluorescente , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Análise de Sequência de RNA , Transcriptoma , Adulto Jovem
12.
Oncotarget ; 8(13): 21380-21397, 2017 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-28423484

RESUMO

Primary myelofibrosis (PMF) is a chronic Philadelphia-negative myeloproliferative neoplasm characterized by hematopoietic stem cell-derived clonal myeloproliferation, involving especially the megakaryocyte lineage. To better characterize how the altered expression of microRNAs might contribute to PMF pathogenesis, we have previously performed the integrative analysis of gene and microRNA expression profiles of PMF hematopoietic stem/progenitor cells (HSPCs), which allowed us to identify miR-494-3p as the upregulated microRNA predicted to target the highest number of downregulated mRNAs.To elucidate the role of miR-494-3p in hematopoietic differentiation, in the present study we demonstrated that miR-494-3p enforced expression in normal HSPCs promotes megakaryocytopoiesis. Gene expression profiling upon miR-494-3p overexpression allowed the identification of genes commonly downregulated both after microRNA overexpression and in PMF CD34+ cells. Among them, suppressor of cytokine signaling 6 (SOCS6) was confirmed to be a miR-494-3p target by luciferase assay. Western blot analysis showed reduced level of SOCS6 protein as well as STAT3 activation in miR-494-3p overexpressing cells. Furthermore, transient inhibition of SOCS6 expression in HSPCs demonstrated that SOCS6 silencing stimulates megakaryocytopoiesis, mimicking the phenotypic effects observed upon miR-494-3p overexpression. Finally, to disclose the contribution of miR-494-3p upregulation to PMF pathogenesis, we performed inhibition experiments in PMF HSPCs, which showed that miR-494-3p silencing led to SOCS6 upregulation and impaired megakaryocyte differentiation.Taken together, our results describe for the first time the role of miR-494-3p during normal HSPC differentiation and suggest that its increased expression, and the subsequent downregulation of its target SOCS6, might contribute to the megakaryocyte hyperplasia commonly observed in PMF patients.


Assuntos
Células-Tronco Hematopoéticas/patologia , MicroRNAs/biossíntese , Mielofibrose Primária/patologia , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Trombopoese/genética , Western Blotting , Eletroporação , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/genética , Células-Tronco Hematopoéticas/metabolismo , Humanos , Imunofenotipagem , Reação em Cadeia da Polimerase , Mielofibrose Primária/genética , Mielofibrose Primária/metabolismo , Transcriptoma
13.
Stem Cells Dev ; 25(19): 1433-43, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27520398

RESUMO

microRNAs are key regulators of gene expression that control stem cell fate by posttranscriptional downregulation of hundreds of target genes through seed pairing in their 3' untranslated region. In fact, miRNAs tightly regulate fundamental stem cell processes, like self-renewal, proliferation, and differentiation; therefore, miRNA deregulation may contribute to the development of solid tumors and hematological malignancies. miR-382-5p has been found to be upregulated in patients with myeloid neoplasms, but its role in normal hematopoiesis is still unknown. In this study, we demonstrated that miR-382-5p overexpression in CD34(+) hematopoietic stem/progenitor cells (HSPCs) leads to a significant decrease of megakaryocyte precursors coupled to increase of granulocyte ones. Furthermore, by means of a computational analysis using different prediction algorithms, we identified several putative mRNA targets of miR-382-5p that are downregulated upon miRNA overexpression (ie, FLI1, GATA2, MAF, MXD1, RUNX1, and SGK1). Among these, we validated MXD1 as real target of miR-382-5p by luciferase reporter assay. Finally, we showed that MXD1 knockdown mimics the effects of miR-382-5p overexpression on granulocyte and megakaryocyte differentiation of CD34(+) cells. Overall, our results demonstrated that miR-382-5p expression favors the expansion of granulocyte lineage and impairs megakaryocyte commitment through MXD1 downregulation. Therefore, our data showed for the first time that the miR-382-5p/MXD1 axis plays a critical role in myelopoiesis by affecting the lineage choice of CD34(+) HSPCs.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Diferenciação Celular , Regulação para Baixo , Células-Tronco Hematopoéticas/metabolismo , MicroRNAs/metabolismo , Proteínas Repressoras/genética , Antígenos CD34/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem da Célula/efeitos dos fármacos , Linhagem da Célula/genética , Células Cultivadas , Células Clonais , Colágeno/farmacologia , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Inativação Gênica/efeitos dos fármacos , Genes Reporter , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Humanos , Luciferases/metabolismo , Metilcelulose/farmacologia , MicroRNAs/genética , Proteínas Repressoras/metabolismo , Reprodutibilidade dos Testes
14.
Blood ; 127(10): 1249-59, 2016 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-26787733

RESUMO

Megakaryopoiesis is a complex, stepwise process that takes place largely in the bone marrow. At the apex of the hierarchy, hematopoietic stem cells undergo a number of lineage commitment decisions that ultimately lead to the production of polyploid megakaryocytes. On average, megakaryocytes release 10(11) platelets per day into the blood that repair vascular injuries and prevent excessive bleeding. This differentiation process is tightly controlled by exogenous and endogenous factors, which have been the topics of intense research in the hematopoietic field. Indeed, a skewing of megakaryocyte commitment and differentiation may entail the onset of myeloproliferative neoplasms and other preleukemic disorders together with acute megakaryoblastic leukemia, whereas quantitative or qualitative defects in platelet production can lead to inherited platelet disorders. The recent advent of next-generation sequencing has prompted mapping of the genomic landscape of these conditions to provide an accurate view of the underlying lesions. The aims of this review are to introduce the physiological pathways of megakaryopoiesis and to present landmark studies on acquired and inherited disorders that target them. These studies have not only introduced a new era in the fields of molecular medicine and targeted therapies but may also provide us with a better understanding of the mechanisms underlying normal megakaryopoiesis and thrombopoiesis that can inform efforts to create alternative sources of megakaryocytes and platelets.


Assuntos
Transtornos Plaquetários , Plaquetas , Doenças Genéticas Inatas , Genoma Humano , Megacariócitos , Trombopoese/genética , Animais , Transtornos Plaquetários/genética , Transtornos Plaquetários/metabolismo , Transtornos Plaquetários/patologia , Plaquetas/metabolismo , Plaquetas/patologia , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/metabolismo , Doenças Genéticas Inatas/patologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Megacariócitos/metabolismo , Megacariócitos/patologia
15.
Int J Cancer ; 138(7): 1657-69, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26547506

RESUMO

Primary myelofibrosis (PMF) is a Myeloproliferative Neoplasm (MPN) characterized by megakaryocyte hyperplasia, progressive bone marrow fibrosis, extramedullary hematopoiesis and transformation to Acute Myeloid Leukemia (AML). A number of phenotypic driver (JAK2, CALR, MPL) and additional subclonal mutations have been described in PMF, pointing to a complex genomic landscape. To discover novel genomic lesions that can contribute to disease phenotype and/or development, gene expression and copy number signals were integrated and several genomic abnormalities leading to a concordant alteration in gene expression levels were identified. In particular, copy number gain in the polyamine oxidase (PAOX) gene locus was accompanied by a coordinated transcriptional up-regulation in PMF patients. PAOX inhibition resulted in rapid cell death of PMF progenitor cells, while sparing normal cells, suggesting that PAOX inhibition could represent a therapeutic strategy to selectively target PMF cells without affecting normal hematopoietic cells' survival. Moreover, copy number loss in the chromatin modifier HMGXB4 gene correlates with a concomitant transcriptional down-regulation in PMF patients. Interestingly, silencing of HMGXB4 induces megakaryocyte differentiation, while inhibiting erythroid development, in human hematopoietic stem/progenitor cells. These results highlight a previously un-reported, yet potentially interesting role of HMGXB4 in the hematopoietic system and suggest that genomic and transcriptional imbalances of HMGXB4 could contribute to the aberrant expansion of the megakaryocytic lineage that characterizes PMF patients.


Assuntos
Dosagem de Genes , Proteína HMGB2/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Mielofibrose Primária/genética , Aberrações Cromossômicas , Eletroporação , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcriptoma , Poliamina Oxidase
17.
Blood ; 124(13): e21-32, 2014 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-25097177

RESUMO

Primary myelofibrosis (PMF) is a myeloproliferative neoplasm characterized by megakaryocyte (MK) hyperplasia, bone marrow fibrosis, and abnormal stem cell trafficking. PMF may be associated with somatic mutations in JAK2, MPL, or CALR. Previous studies have shown that abnormal MKs play a central role in the pathophysiology of PMF. In this work, we studied both gene and microRNA (miRNA) expression profiles in CD34(+) cells from PMF patients. We identified several biomarkers and putative molecular targets such as FGR, LCN2, and OLFM4. By means of miRNA-gene expression integrative analysis, we found different regulatory networks involved in the dysregulation of transcriptional control and chromatin remodeling. In particular, we identified a network gathering several miRNAs with oncogenic potential (eg, miR-155-5p) and targeted genes whose abnormal function has been previously associated with myeloid neoplasms, including JARID2, NR4A3, CDC42, and HMGB3. Because the validation of miRNA-target interactions unveiled JARID2/miR-155-5p as the strongest relationship in the network, we studied the function of this axis in normal and PMF CD34(+) cells. We showed that JARID2 downregulation mediated by miR-155-5p overexpression leads to increased in vitro formation of CD41(+) MK precursors. These findings suggest that overexpression of miR-155-5p and the resulting downregulation of JARID2 may contribute to MK hyperplasia in PMF.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Células-Tronco Hematopoéticas/metabolismo , MicroRNAs/genética , Mielofibrose Primária/genética , RNA Mensageiro/genética , Antígenos CD34/metabolismo , Diferenciação Celular/genética , Linhagem da Célula/genética , Redes Reguladoras de Genes , Inativação Gênica , Granulócitos/metabolismo , Células-Tronco Hematopoéticas/citologia , Humanos , Megacariócitos/citologia , Megacariócitos/metabolismo , Complexo Repressor Polycomb 2/genética , Interferência de RNA , Reprodutibilidade dos Testes , Trombopoese/genética
18.
PLoS One ; 8(1): e53496, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23349713

RESUMO

Hematopoietic stem cells (HSCs) are located in the bone marrow in a specific microenvironment referred as the hematopoietic stem cell niche, where HSCs interact with a variety of stromal cells. Though several components of the stem cell niche have been identified, the regulatory mechanisms through which such components regulate the stem cell fate are still unknown. In order to address this issue, we investigated how osteoblasts (OBs) can affect the molecular and functional phenotype of Hematopoietic Stem/Progenitor Cells (HSPCs) and vice versa. For this purpose, human CD34+ cells were cultured in direct contact with primary human OBs. Our data showed that CD34+ cells cultured with OBs give rise to higher total cell numbers, produce more CFUs and maintain a higher percentage of CD34+CD38- cells compared to control culture. Moreover, clonogenic assay and long-term culture results showed that co-culture with OBs induces a strong increase in mono/macrophage precursors coupled to a decrease in the erythroid ones. Finally, gene expression profiling (GEP) allowed us to study which signalling pathways were activated in the hematopoietic cell fraction and in the stromal cell compartment after coculture. Such analysis allowed us to identify several cytokine-receptor networks, such as WNT pathway, and transcription factors, as TWIST1 and FOXC1, that could be activated by co-culture with OBs and could be responsible for the biological effects reported above. Altogether our results indicate that OBs are able to affect HPSCs on 2 different levels: on one side, they increase the immature progenitor pool in vitro, on the other side, they favor the expansion of the mono/macrophage precursors at the expense of the erythroid lineage.


Assuntos
Diferenciação Celular , Linhagem da Célula , Células Eritroides/citologia , Células-Tronco Hematopoéticas/citologia , Macrófagos/citologia , Monócitos/citologia , Osteoblastos/citologia , Antígenos CD34/metabolismo , Técnicas de Cocultura , Granulócitos/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos
19.
Exp Hematol ; 40(12): 1043-1054.e6, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22885124

RESUMO

Histone deacetylase inhibitors represent a family of targeted anticancer compounds that are widely used against hematological malignancies. So far little is known about their effects on normal myelopoiesis. Therefore, in order to investigate the effect of histone deacetylase inhibitors on the myeloid commitment of hematopoietic stem/progenitor cells, we treated CD34(+) cells with valproic acid (VPA). Our results demonstrate that VPA treatment induces H4 histone acetylation and hampers cell cycle progression in CD34(+) cells sustaining high levels of CD34 protein expression. In addition, our data show that VPA treatment promotes erythrocyte and megakaryocyte differentiation. In fact, we demonstrate that VPA treatment is able to induce the expression of growth factor-independent protein 1B (GFI1B) and of mixed-lineage leukemia translocated to chromosome 3 protein (MLLT3), which are crucial regulators of erythrocyte and megakaryocyte differentiation, and that the up-regulation of these genes is mediated by the histone hyperacetylation at their promoter sites. Finally, we show that GFI1B inhibition impairs erythroid and megakaryocyte differentiation induced by VPA, while MLLT3 silencing inhibits megakaryocyte commitment only. As a whole, our data suggest that VPA sustains the expression of stemness-related markers in hematopoietic stem/progenitor cells and is able to interfere with hematopoietic lineage commitment by enhancing erythrocyte and megakaryocyte differentiation and by inhibiting the granulocyte and mono-macrophage maturation.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Células Eritroides/citologia , Megacariócitos/citologia , Proteínas Nucleares/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Repressoras/genética , Ácido Valproico/farmacologia , Acetilação/efeitos dos fármacos , Antígenos CD34/genética , Antígenos CD34/metabolismo , Diferenciação Celular/imunologia , Linhagem da Célula/efeitos dos fármacos , Linhagem da Célula/genética , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Cromatina/metabolismo , Células Eritroides/efeitos dos fármacos , Células Eritroides/metabolismo , Fator de Transcrição GATA2/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Inativação Gênica , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Histonas/metabolismo , Humanos , Megacariócitos/efeitos dos fármacos , Megacariócitos/metabolismo , Sequências Reguladoras de Ácido Nucleico
20.
Blood ; 119(13): e120-30, 2012 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-22223824

RESUMO

To gain insights into a possible role of microRNAs in myeloproliferative neoplasms, we performed short RNA massive sequencing and extensive bioinformatic analysis in the JAK2V617F-mutated SET2 cell line. Overall, 652 known mature miRNAs were detected, of which 21 were highly expressed, thus being responsible of most of miRNA-mediated gene repression. microRNA putative targets were enriched in specific signaling pathways, providing information about cell activities under massive posttranscriptional regulation. The majority of miRNAs were mixtures of sequence variants, called isomiRs, mainly because of alternative, noncanonical processing of hairpin precursors. We also identified 78 novel miRNAs (miRNA*) derived from known hairpin precursors. Both major and minor (*) forms of miRNAs were expressed concurrently from half of expressed hairpins, highlighting the relevance of miRNA* and the complexity of strand selection bias regulation. Finally, we discovered that SET2 cells express a number of miRNA-offset RNAs (moRNAs), short RNAs derived from genomic regions flanking mature miRNAs. We provide novel data about the possible origin of moRNAs, although their functional role remains to be elucidated. Overall, this study shed light on the complexity of microRNA-mediated gene regulation in SET2 cells and represents the basis for future studies in JAK2V617F-mutated cellular models.


Assuntos
Janus Quinase 2/genética , MicroRNAs/genética , MicroRNAs/isolamento & purificação , Substituição de Aminoácidos/fisiologia , Sequência de Bases , Linhagem Celular Tumoral , Clonagem Molecular , Regulação Neoplásica da Expressão Gênica , Heterogeneidade Genética , Humanos , Dados de Sequência Molecular , Mutação/fisiologia , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/patologia , Fenilalanina/genética , Isoformas de RNA/genética , Precursores de RNA/genética , Valina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA