Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3322, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637545

RESUMO

The mechanisms that underlie the regulation of enzymatic reactions by biomolecular condensates and how they scale with compartment size remain poorly understood. Here we use intrinsically disordered domains as building blocks to generate programmable enzymatic condensates of NADH-oxidase (NOX) with different sizes spanning from nanometers to microns. These disordered domains, derived from three distinct RNA-binding proteins, each possessing different net charge, result in the formation of condensates characterized by a comparable high local concentration of the enzyme yet within distinct environments. We show that only condensates with the highest recruitment of substrate and cofactor exhibit an increase in enzymatic activity. Notably, we observe an enhancement in enzymatic rate across a wide range of condensate sizes, from nanometers to microns, indicating that emergent properties of condensates can arise within assemblies as small as nanometers. Furthermore, we show a larger rate enhancement in smaller condensates. Our findings demonstrate the ability of condensates to modulate enzymatic reactions by creating distinct effective solvent environments compared to the surrounding solution, with implications for the design of protein-based heterogeneous biocatalysts.


Assuntos
Condensados Biomoleculares , Solventes
2.
Anal Chem ; 95(33): 12443-12451, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37556360

RESUMO

Extracellular vesicles (EVs) are membrane-enclosed biological nanoparticles with potential as diagnostic markers and carriers for therapeutics. Characterization of EVs poses severe challenges due to their complex structure and composition, requiring the combination of orthogonal analytical techniques. Here, we demonstrate how liquid chromatography combined with multi-angle light scattering (MALS) and fluorescence detection in one single apparatus can provide multiparametric characterization of EV samples, including concentration of particles, average diameter of the particles, protein amount to particle number ratio, presence of EV surface markers and lipids, EV shape, and sample purity. The method requires a small amount of sample of approximately 107 EVs, limited handling of the sample and data analysis time in the order of minutes; it is fully automatable and can be applied to both crude and purified samples.


Assuntos
Vesículas Extracelulares , Vesículas Extracelulares/química , Cromatografia Líquida , Tamanho da Partícula
3.
J Comput Aided Mol Des ; 36(2): 117-130, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34978000

RESUMO

The calculation of relative free-energy differences between different compounds plays an important role in drug design to identify potent binders for a given protein target. Most rigorous methods based on molecular dynamics simulations estimate the free-energy difference between pairs of ligands. Thus, the comparison of multiple ligands requires the construction of a "state graph", in which the compounds are connected by alchemical transformations. The computational cost can be optimized by reducing the state graph to a minimal set of transformations. However, this may require individual adaptation of the sampling strategy if a transformation process does not converge in a given simulation time. In contrast, path-free methods like replica-exchange enveloping distribution sampling (RE-EDS) allow the sampling of multiple states within a single simulation without the pre-definition of alchemical transition paths. To optimize sampling and convergence, a set of RE-EDS parameters needs to be estimated in a pre-processing step. Here, we present an automated procedure for this step that determines all required parameters, improving the robustness and ease of use of the methodology. To illustrate the performance, the relative binding free energies are calculated for a series of checkpoint kinase 1 inhibitors containing challenging transformations in ring size, opening/closing, and extension, which reflect changes observed in scaffold hopping. The simulation of such transformations with RE-EDS can be conducted with conventional force fields and, in particular, without soft bond-stretching terms.


Assuntos
Simulação de Dinâmica Molecular , Entropia , Ligantes , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA