Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
EJNMMI Res ; 14(1): 43, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38683467

RESUMO

BACKGROUND: 4-Aminopyridine (4AP) is a medication for the symptomatic treatment of multiple sclerosis. Several 4AP-based PET tracers have been developed for imaging demyelination. In preclinical studies, [11C]3MeO4AP has shown promise due to its high brain permeability, high metabolic stability, high plasma availability, and high in vivo binding affinity. To prepare for the translation to human studies, we developed a cGMP-compatible automated radiosynthesis protocol and evaluated the whole-body biodistribution and radiation dosimetry of [11C]3MeO4AP in non-human primates (NHPs). METHODS: Automated radiosynthesis was carried out using a GE TRACERlab FX-C Pro synthesis module. One male and one female adult rhesus macaques were used in the study. A high-resolution CT from cranial vertex to knee was acquired. PET data were collected using a dynamic acquisition protocol with four bed positions and 13 passes over a total scan time of ~ 150 min. Based on the CT and PET images, volumes of interest (VOIs) were manually drawn for selected organs. Non-decay corrected time-activity curves (TACs) were extracted for each VOI. Radiation dosimetry and effective dose were calculated from the integrated TACs using OLINDA software. RESULTS: Fully automated radiosynthesis of [11C]3MeO4AP was achieved with 7.3 ± 1.2% (n = 4) of non-decay corrected radiochemical yield within 38 min of synthesis and purification time. [11C]3MeO4AP distributed quickly throughout the body and into the brain. The organs with highest dose were the kidneys. The average effective dose of [11C]3MeO4AP was 4.0 ± 0.6 µSv/MBq. No significant changes in vital signs were observed during the scan. CONCLUSION: A cGMP-compatible automated radiosynthesis of [11C]3MeO4AP was developed. The whole-body biodistribution and radiation dosimetry of [11C]3MeO4AP was successfully evaluated in NHPs. [11C]3MeO4AP shows lower average effective dose than [18F]3F4AP and similar average effective dose as other carbon-11 tracers.

2.
J Cereb Blood Flow Metab ; : 271678X241238820, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38477292

RESUMO

Stimulation of the M4 muscarinic acetylcholine receptor reduces striatal hyperdopaminergia, suggesting its potential as a therapeutic target for schizophrenia. Emraclidine (CVL-231) is a novel, highly selective, positive allosteric modulator (PAM) of M4 muscarinic acetylcholine receptors i.e. acts as a modulator that increases the response of these receptors. First, we aimed to further characterize the positron emission tomography (PET) imaging and quantification performance of a recently developed M4 PAM radiotracer, [11C]MK-6884, in non-human primates (NHPs). Second, we applied these results to determine the receptor occupancy of CVL-231 as a function of dose. Using paired baseline-blocking PET scans, we quantified total volume of distribution, binding potential, and receptor occupancy. Both blood-based and reference region-based methods quantified M4 receptor levels across brain regions. The 2-tissue 4-parameter kinetic model best fitted regional [11C]MK-6884-time activity curves. Only the caudate nucleus and putamen displayed statistically significant [11C]MK-6884 uptake and dose-dependent blocking by CVL-231. For binding potential and receptor occupancy quantification, the simplified reference tissue model using the grey cerebellum as a reference region was employed. CVL-231 demonstrated dose-dependent M4 receptor occupancy in the striatum of the NHP brain and shows promise for further development in clinical trials.

3.
Biol Psychiatry ; 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38395372

RESUMO

BACKGROUND: Understanding the neurobiological effects of stress is critical for addressing the etiology of major depressive disorder (MDD). Using a dimensional approach involving individuals with differing degree of MDD risk, we investigated 1) the effects of acute stress on cortico-cortical and subcortical-cortical functional connectivity (FC) and 2) how such effects are related to gene expression and receptor maps. METHODS: Across 115 participants (37 control, 39 remitted MDD, 39 current MDD), we evaluated the effects of stress on FC during the Montreal Imaging Stress Task. Using partial least squares regression, we investigated genes whose expression in the Allen Human Brain Atlas was associated with anatomical patterns of stress-related FC change. Finally, we correlated stress-related FC change maps with opioid and GABAA (gamma-aminobutyric acid A) receptor distribution maps derived from positron emission tomography. RESULTS: Results revealed robust effects of stress on global cortical connectivity, with increased global FC in frontoparietal and attentional networks and decreased global FC in the medial default mode network. Moreover, robust increases emerged in FC of the caudate, putamen, and amygdala with regions from the ventral attention/salience network, frontoparietal network, and motor networks. Such regions showed preferential expression of genes involved in cell-to-cell signaling (OPRM1, OPRK1, SST, GABRA3, GABRA5), similar to previous genetic MDD studies. CONCLUSIONS: Acute stress altered global cortical connectivity and increased striatal connectivity with cortical regions that express genes that have previously been associated with imaging abnormalities in MDD and are rich in µ and κ opioid receptors. These findings point to overlapping circuitry underlying stress response, reward, and MDD.

4.
Acta Neuropathol ; 147(1): 25, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38280071

RESUMO

We and others have shown that [18F]-Flortaucipir, the most validated tau PET tracer thus far, binds with strong affinity to tau aggregates in Alzheimer's (AD) but has relatively low affinity for tau aggregates in non-AD tauopathies and exhibits off-target binding to neuromelanin- and melanin-containing cells, and to hemorrhages. Several second-generation tau tracers have been subsequently developed. [18F]-MK-6240 and [18F]-PI-2620 are the two that have garnered most attention. Our recent data indicated that the binding pattern of [18F]-MK-6240 closely parallels that of [18F]-Flortaucipir. The present study aimed at the direct comparison of the autoradiographic binding properties and off-target profile of [18F]-Flortaucipir, [18F]-MK-6240 and [18F]-PI-2620 in human tissue specimens, and their potential binding to monoamine oxidases (MAO). Phosphor-screen and high resolution autoradiographic patterns of the three tracers were studied in the same postmortem tissue material from AD and non-AD tauopathies, cerebral amyloid angiopathy, synucleopathies, transactive response DNA-binding protein 43 (TDP-43)-frontotemporal lobe degeneration and controls. Our results show that the three tracers show nearly identical autoradiographic binding profiles. They all strongly bind to neurofibrillary tangles in AD but do not seem to bind to a significant extent to tau aggregates in non-AD tauopathies pointing to their limited utility for the in vivo detection of non-AD tau lesions. None of them binds to lesions containing ß-amyloid, α-synuclein or TDP-43 but they all show strong off-target binding to neuromelanin and melanin-containing cells, as well as weaker binding to areas of hemorrhage. The autoradiographic binding signals of the three tracers are only weakly displaced by competing concentrations of selective MAO-B inhibitor deprenyl but not by MAO-A inhibitor clorgyline suggesting that MAO enzymes do not appear to be a significant binding target of any of them. These findings provide relevant insights for the correct interpretation of the in vivo behavior of these three tau PET tracers.


Assuntos
Doença de Alzheimer , Carbolinas , Isoquinolinas , Doenças Neurodegenerativas , Piridinas , Tauopatias , Humanos , Doenças Neurodegenerativas/patologia , Melaninas/metabolismo , Encéfalo/patologia , Tauopatias/patologia , Monoaminoxidase/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas tau/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Doença de Alzheimer/patologia
5.
ACS Chem Neurosci ; 14(23): 4208-4215, 2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-37947793

RESUMO

Gabapentin, a selective ligand for the α2δ subunit of voltage-dependent calcium channels, is an anticonvulsant medication used in the treatment of neuropathic pain, epilepsy, and other neurological conditions. We recently described two radiofluorinated derivatives of gabapentin (trans-4-[18F]fluorogabapentin, [18F]tGBP4F, and cis-4-[18F]fluorogabapentin, [18F]cGBP4F) and showed that these compounds accumulate in the injured nerves in a rodent model of neuropathic pain. Given the use of gabapentin in brain diseases, here we investigate whether these radiofluorinated derivatives of gabapentin can be used for imaging α2δ receptors in the brain. Specifically, we developed automated radiosynthesis methods for [18F]tGBP4F and [18F]cGBP4F and conducted dynamic PET imaging in adult rhesus macaques with and without preadministration of pharmacological doses of gabapentin. Both radiotracers showed very high metabolic stability, negligible plasma protein binding, and slow accumulation in the brain. [18F]tGBP4F, the isomer with higher binding affinity, showed low brain uptake and could not be displaced, whereas [18F]cGBP4F showed moderate brain uptake and could be partially displaced. Kinetic modeling of brain regional time-activity curves using a metabolite-corrected arterial input function shows that a one-tissue compartment model accurately fits the data. Graphical analysis using Logan or multilinear analysis 1 produced similar results as compartmental modeling, indicating robust quantification. This study advances our understanding of how gabapentinoids work and provides an important advancement toward imaging α2δ receptors in the brain.


Assuntos
Neuralgia , Tomografia por Emissão de Pósitrons , Animais , Gabapentina/farmacologia , Gabapentina/metabolismo , Macaca mulatta , Tomografia por Emissão de Pósitrons/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Neuralgia/metabolismo
6.
Neurology ; 101(24): e2533-e2544, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37968130

RESUMO

BACKGROUND AND OBJECTIVES: Hippocampal volume (HV) atrophy is a well-known biomarker of memory impairment. However, compared with ß-amyloid (Aß) and tau imaging, it is less specific for Alzheimer disease (AD) pathology. This lack of specificity could provide indirect information about potential copathologies that cannot be observed in vivo. In this prospective cohort study, we aimed to assess the associations among Aß, tau, HV, and cognition, measured over a 10-year follow-up period with a special focus on the contributions of HV atrophy to cognition after adjusting for Aß and tau. METHODS: We enrolled 283 older adults without dementia or overt cognitive impairment in the Harvard Aging Brain Study. In this report, we only analyzed data from individuals with available longitudinal imaging and cognition data. Serial MRI (follow-up duration 1.3-7.0 years), neocortical Aß imaging on Pittsburgh Compound B PET scans (1.9-8.5 years), entorhinal and inferior temporal tau on flortaucipir PET scans (0.8-6.0 years), and the Preclinical Alzheimer Cognitive Composite (3.0-9.8 years) were prospectively collected. We evaluated the longitudinal associations between Aß, tau, volume, and cognition data and investigated sequential models to test the contribution of each biomarker to cognitive decline. RESULTS: We analyzed data from 128 clinically normal older adults, including 72 (56%) women and 56 (44%) men; median age at inclusion was 73 years (range 63-87). Thirty-four participants (27%) exhibited an initial high-Aß burden on PET imaging. Faster HV atrophy was correlated with faster cognitive decline (R2 = 0.28, p < 0.0001). When comparing all biomarkers, HV slope was associated with cognitive decline independently of Aß and tau measures, uniquely accounting for 10% of the variance. Altogether, 45% of the variance in cognitive decline was explained by combining the change measures in the different imaging biomarkers. DISCUSSION: In older adults, longitudinal hippocampal atrophy is associated with cognitive decline, independently of Aß or tau, suggesting that non-AD pathologies (e.g., TDP-43, vascular) may contribute to hippocampal-mediated cognitive decline. Serial HV measures, in addition to AD-specific biomarkers, may help evaluate the contribution of non-AD pathologies that cannot be measured otherwise in vivo.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Masculino , Humanos , Feminino , Idoso , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Proteínas tau , Estudos Prospectivos , Doença de Alzheimer/diagnóstico por imagem , Peptídeos beta-Amiloides , Disfunção Cognitiva/diagnóstico por imagem , Biomarcadores , Atrofia , Tomografia por Emissão de Pósitrons
7.
bioRxiv ; 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37732236

RESUMO

Gabapentin, a selective ligand for the α2δ subunit of voltage-dependent calcium channels, is an anticonvulsant medication used in the treatment of neuropathic pain, epilepsy and other neurological conditions. We recently described two radiofluorinated derivatives of gabapentin (trans-4-[18F]fluorogabapentin, [18F]tGBP4F, and cis-4-[18F]fluorogabapentin, [18F]cGBP4F) and showed that these compounds accumulate in the injured nerves in a rodent model of neuropathic pain. Given the use of gabapentin in brain diseases, here we investigate whether these radiofluorinated derivatives of gabapentin can be used for imaging α2δ receptors in the brain. Specifically, we developed automated radiosynthesis methods for [18F]tGBP4F and [18F]cGBP4F and conducted dynamic PET imaging in adult rhesus macaques with and without preadministration of pharmacological doses of gabapentin. Both radiotracers showed very high metabolic stability, negligible plasma protein binding and slow accumulation in the brain. [18F]tGBP4F, the isomer with higher binding affinity, showed low brain uptake and could not be displaced whereas [18F]cGBP4F showed moderate brain uptake and could be partially displaced. Kinetic modeling of brain regional time-activity curves using a metabolite-corrected arterial input function shows that a 1-tissue compartment model accurately fits the data. Graphical analysis using Logan or multilinear analysis 1 produced similar results as compartmental modeling indicating robust quantification. This study advances our understanding of how gabapentinoids work and provides an important advancement towards imaging α2δ receptors in the brain.

8.
Neurology ; 101(12): e1206-e1217, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37491329

RESUMO

BACKGROUND AND OBJECTIVES: The predictable Braak staging scheme suggests that cortical tau progression may be related to synaptically connected neurons. Animal and human neuroimaging studies demonstrated that changes in neuronal activity contribute to tau spreading. Whether similar mechanisms explain tau progression from the locus coeruleus (LC), a tiny noradrenergic brainstem nucleus involved in novelty, learning, and memory and among the earliest regions to accumulate tau, has not yet been established. We aimed to investigate whether novelty-related LC activity was associated with the accumulation of cortical tau and its implications for cognitive decline. METHODS: We combined functional MRI data of a novel vs repeated face-name learning paradigm, [18F]-FTP-PET, [11C]-PiB-PET, and longitudinal cognitive data from 92 well-characterized older individuals in the Harvard Aging Brain Study. We related novelty vs repetition LC activity to cortical tau deposition and to longitudinal decline in memory, executive function, and the Preclinical Alzheimer Disease Cognitive Composite (version 5; PACC5). Structural equation modeling was used to examine whether entorhinal cortical (EC) tau mediated the relationship between LC activity and cognitive decline and whether this depended on beta-amyloid deposition. RESULTS: The participants' average age at baseline was 69.67 ± 10.14 years. Fifty-one participants were female. Ninety-one participants were cognitively normal (CDR global = 0), and one participant had mild cognitive impairment (CDR global = 0.5) at baseline. Lower novelty-related LC activity was specifically related to greater tau deposition in the medial-lateral temporal cortex and steeper memory decline. LC activity during novelty vs repetition was not related to executive dysfunction or decline on the PACC5. The relationship between LC activity and memory decline was partially mediated by EC tau, particularly in individuals with elevated beta-amyloid deposition. DISCUSSION: Our results suggested that lower novelty-related LC activity is associated with the emergence of EC tau and that the downstream effects of this LC-EC pathway on memory decline also require the presence of elevated beta-amyloid. Longitudinal studies are required to investigate whether optimal LC activity has the potential to delay tau spread and memory decline, which may have implications for designing targeted interventions promoting resilience.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Animais , Humanos , Feminino , Pessoa de Meia-Idade , Idoso , Masculino , Doença de Alzheimer/metabolismo , Locus Cerúleo/diagnóstico por imagem , Proteínas tau/metabolismo , Peptídeos beta-Amiloides/metabolismo , Disfunção Cognitiva/psicologia , Transtornos da Memória/diagnóstico por imagem , Transtornos da Memória/etiologia , Tomografia por Emissão de Pósitrons/métodos
9.
J Neurotrauma ; 40(15-16): 1614-1624, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37282582

RESUMO

American-style football (ASF) players experience repetitive head impacts that may result in chronic traumatic encephalopathy neuropathological change (CTE-NC). At present, a definitive diagnosis of CTE-NC requires the identification of localized hyperphosphorylated Tau (p-Tau) after death via immunohistochemistry. Some studies suggest that positron emission tomography (PET) with the radiotracer [18F]-Flortaucipir (FTP) may be capable of detecting p-Tau and thus establishing a diagnosis of CTE-NC among living former ASF players. To assess associations between FTP, football exposure, and objective neuropsychological measures among former professional ASF players, we conducted a study that compared former professional ASF players with age-matched male control participants without repetitive head impact exposure. Former ASF players and male controls underwent structural magnetic resonance imaging and PET using FTP for p-Tau and [11C]-PiB for amyloid-ß. Former players underwent neuropsychological testing. The ASF exposure was quantified as age at first exposure, professional career duration, concussion signs and symptoms burden, and total years of any football play. Neuropsychological testing included measures of memory, executive functioning, and depression symptom severity. P-Tau was quantified as FTP standardized uptake value ratios (SUVR) and [11C]-PiB by distribution volume ratios (DVR) using cerebellar grey matter as the reference region. There were no significant differences in [18F]-FTP uptake among former ASF players (n = 27, age = 50 ± 7 years) compared with control participants (n = 11, age = 55 ± 4 years), nor did any participant have significant amyloid-ß burden. Among ASF participants, there were no associations between objective measures of neurocognitive functioning and [18F]-FTP uptake. There was a marginally significant difference, however, between [18F]-FTP uptake isolated to the entorhinal cortex among players in age-, position-, and race-adjusted models (p = 0.05) that may represent an area of future investigation. The absence of increased [18F]-FTP uptake in brain regions previously implicated in CTE among former professional ASF players compared with controls questions the utility of [18F]-FTP PET for clinical evaluation in this population.


Assuntos
Concussão Encefálica , Encefalopatia Traumática Crônica , Futebol Americano , Humanos , Masculino , Adulto , Pessoa de Meia-Idade , Encefalopatia Traumática Crônica/patologia , Encéfalo/patologia , Concussão Encefálica/patologia , Tomografia por Emissão de Pósitrons , Peptídeos beta-Amiloides , Proteínas tau/metabolismo
10.
Res Sq ; 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37034652

RESUMO

Reorientation, the process of regaining one's bearings after becoming lost, requires identification of a spatial context (context recognition) and recovery of heading direction within that context (heading retrieval). We previously showed that these processes rely on the use of features and geometry, respectively. Here, we examine reorientation behavior in a task that creates contextual ambiguity over a long timescale to demonstrate that mice learn to combine both featural and geometric cues to recover heading with experience. At the neural level, most CA1 neurons persistently align to geometry, and this alignment predicts heading behavior. However, a small subset of cells shows feature-sensitive place field remapping, which serves to predict context. Efficient heading retrieval and context recognition require integration of featural and geometric information in the active network through rate changes. These data illustrate how context recognition and heading retrieval are coded in CA1 and how these processes change with experience.

11.
bioRxiv ; 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37034655

RESUMO

Purpose: 4-Aminopyridine (4AP) is a medication for the symptomatic treatment of multiple sclerosis. Several 4AP-based PET tracers have been developed for imaging demyelination. In preclinical studies, [ 11 C]3MeO4AP has shown promise due to its high brain permeability, high metabolic stability, high plasma availability, and high in vivo binding affinity. To prepare for the translation to human studies, we developed a cGMP-compliant automated radiosynthesis protocol and evaluated the whole-body biodistribution and radiation dosimetry of [ 11 C]3MeO4AP in non-human primates (NHPs). Methods: Automated radiosynthesis was carried out using a GE TRACERlab FX-C Pro synthesis module. One male and one female adult rhesus macaques were used in the study. A high-resolution CT from cranial vertex to knee was acquired. PET data were collected using a dynamic acquisition protocol with 4 bed positions and 13 passes over a total scan time of ∼150 minutes. Based on the CT and PET images, volumes of interest (VOIs) were manually drawn for selected organs. Non-decay corrected time-activity curves (TACs) were extracted for each VOI. Radiation dosimetry and effective dose were calculated from the integrated TACs using OLINDA software. Results: Fully automated radiosynthesis of [ 11 C]3MeO4AP was achieved with 7.3 ± 1.2 % (n = 4) of non-decay corrected radiochemical yield within 38 min of synthesis and purification time. [ 11 C]3MeO4AP distributed quickly throughout the body and into the brain. The organs with highest dose were the kidneys. The average effective dose of [ 11 C]3MeO4AP was 4.27 ± 0.57 µSv/MBq. No significant changes in vital signs were observed during the scan. Conclusion: The cGMP compliant automated radiosynthesis of [ 11 C]3MeO4AP was developed. The whole-body biodistribution and radiation dosimetry of [ 11 C]3MeO4AP was successfully evaluated in NHPs. [ 11 C]3MeO4AP shows lower average effective dose than [ 18 F]3F4AP and similar average effective dose as other carbon-11 tracers.

12.
Phys Med Biol ; 68(10)2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37116511

RESUMO

Objective. Positron emission tomography (PET) imaging of tau deposition using [18F]-MK6240 often involves long acquisitions in older subjects, many of whom exhibit dementia symptoms. The resulting unavoidable head motion can greatly degrade image quality. Motion increases the variability of PET quantitation for longitudinal studies across subjects, resulting in larger sample sizes in clinical trials of Alzheimer's disease (AD) treatment.Approach. After using an ultra-short frame-by-frame motion detection method based on the list-mode data, we applied an event-by-event list-mode reconstruction to generate the motion-corrected images from 139 scans acquired in 65 subjects. This approach was initially validated in two phantoms experiments against optical tracking data. We developed a motion metric based on the average voxel displacement in the brain to quantify the level of motion in each scan and consequently evaluate the effect of motion correction on images from studies with substantial motion. We estimated the rate of tau accumulation in longitudinal studies (51 subjects) by calculating the difference in the ratio of standard uptake values in key brain regions for AD. We compared the regions' standard deviations across subjects from motion and non-motion-corrected images.Main results. Individually, 14% of the scans exhibited notable motion quantified by the proposed motion metric, affecting 48% of the longitudinal datasets with three time points and 25% of all subjects. Motion correction decreased the blurring in images from scans with notable motion and improved the accuracy in quantitative measures. Motion correction reduced the standard deviation of the rate of tau accumulation by -49%, -24%, -18%, and -16% in the entorhinal, inferior temporal, precuneus, and amygdala regions, respectively.Significance. The list-mode-based motion correction method is capable of correcting both fast and slow motion during brain PET scans. It leads to improved brain PET quantitation, which is crucial for imaging AD.


Assuntos
Doença de Alzheimer , Processamento de Imagem Assistida por Computador , Humanos , Idoso , Processamento de Imagem Assistida por Computador/métodos , Tomografia por Emissão de Pósitrons/métodos , Movimento (Física) , Doença de Alzheimer/diagnóstico por imagem , Encéfalo/diagnóstico por imagem
13.
J Nucl Med ; 64(6): 968-975, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36997330

RESUMO

6-(fluoro-18F)-3-(1H-pyrrolo[2,3-c]pyridin-1-yl)isoquinolin-5-amine ([18F]MK6240) has high affinity and selectivity for hyperphosphorylated tau and readily crosses the blood-brain barrier. This study investigated whether the early phase of [18F]MK6240 can be used to provide a surrogate index of cerebral perfusion. Methods: Forty-nine subjects who were cognitively normal (CN), had mild cognitive impairment (MCI), or had Alzheimer's disease (AD) underwent paired dynamic [18F]MK6240 and [11C]Pittsburgh compound B (PiB) PET, as well as structural MRI to obtain anatomic information. Arterial blood samples were collected in a subset of 24 subjects for [18F]MK6240 scans to derive metabolite-corrected arterial input functions. Regional time-activity curves were extracted using atlases available in the Montreal Neurologic Institute template space and using FreeSurfer. The early phase of brain time-activity curves was analyzed using a 1-tissue-compartment model to obtain a robust estimate of the rate of transfer from plasma to brain tissue, K 1 (mL⋅cm-3⋅min-1), and the simplified reference tissue model 2 was investigated for noninvasive estimation of the relative delivery rate, R 1 (unitless). A head-to-head comparison with R 1 derived from [11C]PiB scans was performed. Grouped differences in R 1 were evaluated among CN, MCI, and AD subjects. Results: Regional K 1 values suggested a relatively high extraction fraction. R 1 estimated noninvasively from simplified reference tissue model 2 agreed well with R 1 calculated indirectly from the blood-based compartment modeling (r = 0.99; mean difference, 0.024 ± 0.027), suggesting that robust estimates were obtained. R 1 measurements obtained with [18F]MK6240 correlated strongly and overall agreed well with those obtained from [11C]PiB (r = 0.93; mean difference, -0.001 ± 0.068). Statistically significant differences were observed in regional R 1 measurements among CN, MCI, and AD subjects, notably in the temporal and parietal cortices. Conclusion: Our results provide evidence that the early phase of [18F]MK6240 images may be used to derive a useful index of cerebral perfusion. The early and late phases of a [18F]MK6240 dynamic acquisition may thus offer complementary information about the pathophysiologic mechanisms of the disease.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Disfunção Cognitiva/diagnóstico por imagem , Compostos de Anilina , Circulação Cerebrovascular
14.
Neuroimage ; 272: 120056, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36977452

RESUMO

Super-resolution (SR) is a methodology that seeks to improve image resolution by exploiting the increased spatial sampling information obtained from multiple acquisitions of the same target with accurately known sub-resolution shifts. This work aims to develop and evaluate an SR estimation framework for brain positron emission tomography (PET), taking advantage of a high-resolution infra-red tracking camera to measure shifts precisely and continuously. Moving phantoms and non-human primate (NHP) experiments were performed on a GE Discovery MI PET/CT scanner (GE Healthcare) using an NDI Polaris Vega (Northern Digital Inc), an external optical motion tracking device. To enable SR, a robust temporal and spatial calibration of the two devices was developed as well as a list-mode Ordered Subset Expectation Maximization PET reconstruction algorithm, incorporating the high-resolution tracking data from the Polaris Vega to correct motion for measured line of responses on an event-by-event basis. For both phantoms and NHP studies, the SR reconstruction method yielded PET images with visibly increased spatial resolution compared to standard static acquisitions, allowing improved visualization of small structures. Quantitative analysis in terms of SSIM, CNR and line profiles were conducted and validated our observations. The results demonstrate that SR can be achieved in brain PET by measuring target motion in real-time using a high-resolution infrared tracking camera.


Assuntos
Captura de Movimento , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Animais , Tomografia por Emissão de Pósitrons/métodos , Movimento (Física) , Encéfalo/diagnóstico por imagem , Imagens de Fantasmas , Algoritmos , Processamento de Imagem Assistida por Computador/métodos
16.
J Cereb Blood Flow Metab ; 43(4): 581-594, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36420769

RESUMO

[18F]MK-6240 meningeal/extracerebral off-target binding may impact tau quantification. We examined the kinetics and longitudinal changes of extracerebral and reference regions. [18F]MK-6240 PET was performed in 24 cognitively-normal and eight cognitively-impaired subjects, with arterial samples in 13 subjects. Follow-up scans at 6.1 ± 0.5 (n = 25) and 13.3 ± 0.9 (n = 16) months were acquired. Extracerebral and reference region (cerebellar gray matter (CerGM)-based, cerebral white matter (WM), pons) uptake were evaluated using standardized uptake values (SUV90-110), spectral analysis, and distribution volume. Longitudinal changes in SUV90-110 were examined. The impact of reference region on target region outcomes, partial volume correction (PVC) and regional erosion were evaluated. Eroded WM and pons showed lower variability, lower extracerebral contamination, and lower longitudinal changes than CerGM-based regions. CerGM-based regions resulted larger cross-sectional effect sizes for group differentiation. Extracerebral signal was high in 50% of subjects and exhibited irreversible kinetics and nonsignificant longitudinal changes over one-year but was highly variable at subject-level. PVC resulted in higher variability in reference region uptake and longitudinal changes. Our results suggest that eroded CerGM may be preferred for cross-sectional, whilst eroded WM or pons may be preferred for longitudinal [18F]MK-6240 studies. For CerGM, erosion was necessary (preferred over PVC) to address the heterogenous nature of extracerebral signal.


Assuntos
Disfunção Cognitiva , Humanos , Estudos Transversais , Cinética , Tomografia por Emissão de Pósitrons/métodos , Estudos de Casos e Controles
17.
J Cereb Blood Flow Metab ; 43(2): 296-308, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36172629

RESUMO

Metabotropic glutamate receptor 2 (mGluR2) has been extensively studied for the treatment of various neurological and psychiatric disorders. Understanding of the mGluR2 function is pivotal in supporting the drug discovery targeting mGluR2. Herein, the positive allosteric modulation of mGluR2 was investigated via the in vivo positron emission tomography (PET) imaging using 2-((4-(2-[11C]methoxy-4-(trifluoromethyl)phenyl)piperidin-1-yl)methyl)-1-methyl-1H-imidazo[4,5-b]pyridine ([11C]mG2P001). Distinct from the orthosteric compounds, pretreatment with the unlabeled mG2P001, a potent mGluR2 positive allosteric modulator (PAM), resulted in a significant increase instead of decrease of the [11C]mG2P001 accumulation in rat brain detected by PET imaging. Subsequent in vitro studies with [3H]mG2P001 revealed the cooperative binding mechanism of mG2P001 with glutamate and its pharmacological effect that contributed to the enhanced binding of [3H]mG2P001 in transfected CHO cells expressing mGluR2. The in vivo PET imaging and quantitative analysis of [11C]mG2P001 in non-human primates (NHPs) further validated the characteristics of [11C]mG2P001 as an imaging ligand for mGluR2. Self-blocking studies in primates enhanced accumulation of [11C]mG2P001. Altogether, these studies show that [11C]mG2P001 is a sensitive biomarker for mGluR2 expression and the binding is affected by the tissue glutamate concentration.


Assuntos
Receptores de Glutamato Metabotrópico , Ratos , Cricetinae , Animais , Ratos Sprague-Dawley , Cricetulus , Tomografia por Emissão de Pósitrons
18.
Eur J Nucl Med Mol Imaging ; 50(2): 344-351, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36197499

RESUMO

PURPOSE: [18F]3F4AP is a novel PET radiotracer that targets voltage-gated potassium (K+) channels and has shown promise for imaging demyelinated lesions in animal models of neurological diseases. This study aimed to evaluate the biodistribution, safety, and radiation dosimetry of [18F]3F4AP in healthy human volunteers. METHODS: Four healthy volunteers (2 females) underwent a 4-h dynamic PET scan from the cranial vertex to mid-thigh using multiple bed positions after administration of 368 ± 17.9 MBq (9.94 ± 0.48 mCi) of [18F]3F4AP. Volumes of interest for relevant organs were manually drawn guided by the CT, and PET images and time-activity curves (TACs) were extracted. Radiation dosimetry was estimated from the integrated TACs using OLINDA software. Safety assessments included measuring vital signs immediately before and after the scan, monitoring for adverse events, and obtaining a comprehensive metabolic panel and electrocardiogram within 30 days before and after the scan. RESULTS: [18F]3F4AP distributed throughout the body with the highest levels of activity in the kidneys, urinary bladder, stomach, liver, spleen, and brain and with low accumulation in muscle and fat. The tracer cleared quickly from circulation and from most organs. The clearance of the tracer was noticeably faster than previously reported in nonhuman primates (NHPs). The average effective dose (ED) across all subjects was 12.1 ± 2.2 µSv/MBq, which is lower than the estimated ED from the NHP studies (21.6 ± 0.6 µSv/MBq) as well as the ED of other fluorine-18 radiotracers such as [18F]FDG (~ 20 µSv/MBq). No differences in ED between males and females were observed. No substantial changes in safety assessments or adverse events were recorded. CONCLUSION: The biodistribution and radiation dosimetry of [18F]3F4AP in humans are reported for the first time. The average total ED across four subjects was lower than most 18F-labeled PET tracers. The tracer and study procedures were well tolerated, and no adverse events occurred.


Assuntos
Doenças Desmielinizantes , Radiometria , Masculino , Feminino , Animais , Humanos , Distribuição Tecidual , Radiometria/métodos , Tomografia por Emissão de Pósitrons/efeitos adversos , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos
19.
ACS Chem Neurosci ; 13(23): 3342-3351, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36417797

RESUMO

Demyelination, the loss of the insulating sheath of neurons, causes failed or slowed neuronal conduction and contributes to the neurological symptoms in multiple sclerosis, traumatic brain and spinal cord injuries, stroke, and dementia. In demyelinated neurons, the axonal potassium channels Kv1.1 and Kv1.2, generally under the myelin sheath, become exposed and upregulated. Therefore, imaging these channels using positron emission tomography can provide valuable information for disease diagnosis and monitoring. Here, we describe a novel tracer for Kv1 channels, [11C]3-methyl-4-aminopyridine ([11C]3Me4AP). [11C]3Me4AP was efficiently synthesized via Pd(0)-Cu(I) comediated Stille cross-coupling of a stannyl precursor containing a free amino group. Evaluation of its imaging properties in rats and nonhuman primates showed that [11C]3Me4AP has a moderate brain permeability and slow kinetics. Additional evaluation in monkeys showed that the tracer is metabolically stable and that a one-tissue compartment model can accurately model the regional brain time-activity curves. Compared to the related tracers [18F]3-fluoro-4-aminopyridine ([18F]3F4AP) and [11C]3-methoxy-4-aminopyridine ([11C]3MeO4AP), [11C]3Me4AP shows lower initial brain uptake, which indicates reduced permeability to the blood-brain barrier and slower kinetics, suggesting higher binding affinity consistent with in vitro studies. While the slow kinetics and strong binding affinity resulted in a tracer with less favorable properties for imaging the brain than its predecessors, these properties may make 3Me4AP useful as a therapeutic.


Assuntos
4-Aminopiridina , Encéfalo , Doenças Desmielinizantes , Canal de Potássio Kv1.1 , Canal de Potássio Kv1.2 , Imagem Molecular , Traçadores Radioativos , Animais , Ratos , 4-Aminopiridina/análogos & derivados , 4-Aminopiridina/síntese química , 4-Aminopiridina/farmacocinética , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Permeabilidade , Canal de Potássio Kv1.1/metabolismo , Canal de Potássio Kv1.2/metabolismo , Doenças Desmielinizantes/diagnóstico por imagem , Imagem Molecular/métodos , Primatas , Barreira Hematoencefálica/metabolismo
20.
J Med Chem ; 65(14): 9939-9954, 2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-35802702

RESUMO

An array of triazolopyridines based on JNJ-46356479 (6) were synthesized as potential positron emission tomography radiotracers for metabotropic glutamate receptor 2 (mGluR2). The selected candidates 8-10 featured enhanced positive allosteric modulator (PAM) activity (20-fold max.) and mGluR2 agonist activity (25-fold max.) compared to compound 6 in the cAMP GloSensor assays. Radiolabeling of compounds 8 and 9 (mG2P026) was achieved via Cu-mediated radiofluorination with satisfactory radiochemical yield, >5% (non-decay-corrected); high molar activity, >180 GBq/µmol; and excellent radiochemical purity, >98%. Preliminary characterization of [18F]8 and [18F]9 in rats confirmed their excellent brain permeability and binding kinetics. Further evaluation of [18F]9 in a non-human primate confirmed its superior brain heterogeneity in mapping mGluR2 and higher affinity than [18F]6. Pretreatment with different classes of PAMs in rats and a primate led to similarly enhanced brain uptake of [18F]9. As a selective ligand, [18F]9 has the potential to be developed for translational studies.


Assuntos
Receptores de Glutamato Metabotrópico , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Ligantes , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Ratos , Ratos Sprague-Dawley , Receptores de Glutamato Metabotrópico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA