Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 12(15)2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35957092

RESUMO

Cloth used for facemask material has been coated with silver nanoparticles using an aerosol method that passes pure uncoated nanoparticles through the cloth and deposits them throughout the volume. The particles have been characterized by electron microscopy and have a typical diameter of 4 nm with the atomic structure of pure metallic silver presented as an assortment of single crystals and polycrystals. The particles adhere well to the cloth fibers, and the coating consists of individual nanoparticles at low deposition times, evolving to fully agglomerated assemblies in heavy coatings. The cloth was exposed to Usutu virus and murine norovirus particles in suspension and allowed to dry, following which, the infectious virus particles were rescued by soaking the cloth in culture media. It was found that up to 98% of the virus particles were neutralized by this contact with the silver nanoparticles for optimum deposition conditions. The best performance was obtained with agglomerated films and with polycrystalline nanoparticles. The work indicates that silver nanoparticles embedded in masks can neutralize the majority of virus particles that enter the mask and thus increase the opacity of masks to infectious viruses by up to a factor of 50. In addition, the majority of the virus particles released from the mask after use are non-infectious.

2.
Small ; 18(28): e2106762, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35689307

RESUMO

Dense systems of magnetic nanoparticles may exhibit dipolar collective behavior. However, two fundamental questions remain unsolved: i) whether the transition temperature may be affected by the particle anisotropy or it is essentially determined by the intensity of the interparticle dipolar interactions, and ii) what is the minimum ratio of dipole-dipole interaction (Edd ) to nanoparticle anisotropy (Kef V, anisotropy⋅volume) energies necessary to crossover from individual to collective behavior. A series of particle assemblies with similarly intense dipolar interactions but widely varying anisotropy is studied. The Kef  is tuned through different degrees of cobalt-doping in maghemite nanoparticles, resulting in a variation of nearly an order of magnitude. All the bare particle compacts display collective behavior, except the one made with the highest anisotropy particles, which presents "marginal" features. Thus, a threshold of Kef V/Edd  ≈ 130 to suppress collective behavior is derived, in good agreement with Monte Carlo simulations. This translates into a crossover value of ≈1.7 for the easily accessible parameter TMAX (interacting)/TMAX (non-interacting) (ratio of the peak temperatures of the zero-field-cooled magnetization curves of interacting and dilute particle systems), which is successfully tested against the literature to predict the individual-like/collective behavior of any given interacting particle assembly comprising relatively uniform particles.


Assuntos
Magnetismo , Nanopartículas , Anisotropia , Cobalto , Transição de Fase
3.
Nanomaterials (Basel) ; 11(11)2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34835568

RESUMO

The advantages of gas-phase synthesis of nanoparticles in terms of size control and flexibility in choice of materials is well known. There is increasing interest in synthesizing multi-element nanoparticles in order to optimize their performance in specific applications, and here, the flexibility of material choice is a key advantage. Mixtures of almost any solid materials can be manufactured and in the case of core-shell particles, there is independent control over core size and shell thickness. This review presents different methods of producing multi-element nanoparticles, including the use of multiple targets, alloy targets and in-line deposition methods to coat pre-formed cores. It also discusses the factors that produce alloy, core-shell or Janus morphologies and what is possible or not to synthesize. Some applications of multi-element nanoparticles in medicine will be described.

4.
Adv Sci (Weinh) ; 8(8): 2002683, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33898170

RESUMO

Enhancement of mechanical properties in self-assembled superstructures of magnetic nanoparticles is a new emerging aspect of their remarkable collective behavior. However, how magnetic interactions modulate mechanical properties is, to date, not fully understood. Through a comprehensive Monte Carlo investigation, this study demonstrates how the mechanical properties of self-assembled magnetic nanocubes can be controlled intrinsically by the nanoparticle magnetocrystalline anisotropy (MA), as well as by the superstructure shape anisotropy, without any need for changes in structural design (i.e., nanoparticle size, shape, and packing arrangement). A low MA-to-dipolar energy ratio, as found in iron oxide and permalloy systems, favors isotropic mechanical superstructure stabilization, whereas a high ratio yields magnetically blocked nanoparticle macrospins which can give rise to metastable superferromagnetism, as expected in cobalt ferrite simple cubic supercrystals. Such full parallel alignment of the particle moments is shown to induce mechanical anisotropy, where the superior high-strength axis can be remotely reconfigured by means of an applied magnetic field. The new concepts developed here pave the way for the experimental realization of smart magneto-micromechanical systems (based, e.g., on the permanent super-magnetostriction effect illustrated here) and inspire new design rules for applied functional materials.

5.
Nanomaterials (Basel) ; 7(3)2017 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-28336895

RESUMO

Porous films of cobalt nanoparticles have been obtained by sputter gas aggregation and controllably oxidized by air annealing at 100 °C for progressively longer times (up to more than 1400 h). The magnetic properties of the samples were monitored during the process, with a focus on the exchange bias field. Air annealing proves to be a convenient way to control the Co/CoO ratio in the samples, allowing the optimization of the exchange bias field to a value above 6 kOe at 5 K. The occurrence of the maximum in the exchange bias field is understood in terms of the density of CoO uncompensated spins and their degree of pinning, with the former reducing and the latter increasing upon the growth of a progressively thicker CoO shell. Vertical shifts exhibited in the magnetization loops are found to correlate qualitatively with the peak in the exchange bias field, while an increase in vertical shift observed for longer oxidation times may be explained by a growing fraction of almost completely oxidized particles. The presence of a hummingbird-like form in magnetization loops can be understood in terms of a combination of hard (biased) and soft (unbiased) components; however, the precise origin of the soft phase is as yet unresolved.

6.
Nanotechnology ; 26(47): 475703, 2015 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-26536047

RESUMO

The question of the dominant interparticle magnetic interaction type in random closely packed assemblies of different diameter (6.2-11.5 nm) bare maghemite nanoparticles (NPs) is addressed. Single-particle magnetic properties such as particle anisotropy and exchange bias field are first of all studied in dilute (reference) systems of these same NPs, where interparticle interactions are neglible. Substantial surface spin disorder is revealed in all particles except the smallest, viz. for diameters d = 8-11.5 nm but not for d = 6.2-6.3 nm. X-ray diffraction analysis points to a crystallographic origin of this effect. The study of closely packed assemblies of the d ≥ 8 nm particles observes collective (superspin) freezing that clearly appears to be governed by interparticle dipole interactions. However, the dense assemblies of the smallest particles exhibit freezing temperatures that are higher than expected from a simple (dipole) extrapolation of the corresponding temperatures found in the d ≥ 8 nm assemblies. It is suggested that the nature of the dominant interparticle interaction in these smaller particle assemblies is superexchange, whereby the lack of significant surface spin disorder allows this mechanism to become important at the level of interacting superspins.

7.
Phys Rev Lett ; 110(2): 027201, 2013 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-23383935

RESUMO

Microscopic structural instabilities of EuTiO3 single crystals were investigated by synchrotron x-ray diffraction. Antiferrodistortive (AFD) oxygen octahedron rotational order was observed alongside Ti derived antiferroelectric distortions. The competition between the two instabilities is reconciled through a cooperatively modulated structure allowing both to coexist. The combination of electric and magnetic fields increases the population of the modulated AFD order, illustrating how the origin of the large magnetoelectric coupling derives from the dynamic equilibrium between AFD and polar instabilities.

8.
Radiother Oncol ; 69(1): 43-51, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14597356

RESUMO

PURPOSE: To assess target coverage and dose homogeneity using conventional radiotherapy (RT) and intensity-modulated RT (IMRT) with anterior and posterior beams for elective irradiation of the cervical lymph nodes in patients with head and neck cancer. MATERIALS AND METHODS: A planning study was performed in six patients who had undergone radical RT for head and neck cancer. RT plans to irradiate the cervical lymph nodes using a single anterior field, or opposed anterior and posterior fields, with 6 or 10 MV photons were compared. Plans using IMRT for missing-tissue compensation were also studied. An algorithm was developed to guide clinicians to the most appropriate treatment technique depending on the nodal groups to be irradiated. RESULTS: With 6 MV single field (SF) irradiation significant under-dose (minimum dose <70% of prescription dose) was seen in nodal groups II and V, due to their posterior position. With SF 10 MV the mean dose to level II was higher (p<0.001) and dose homogeneity to levels Ib and II was improved. Using opposed fields (OF), minimum doses to the nodes in levels II and V were improved. OF using 10 MV showed significant advantage over 6 MV with reduction of maximum doses to levels II, III and V. SF 10 MV IMRT improved maximum doses to levels Ib and II compared to SF 6 MV IMRT. OF IMRT gave the best dose distributions with optimal mean dose and dose homogeneity. Beam energy made no difference with OF IMRT. CONCLUSIONS: The optimal technique for elective cervical node irradiation depends on the lymph node levels within the PTV. If irradiation of the level II or V nodes is required, then the OF IMRT technique with either 6 or 10 MV gives the best dose distributions. In the absence of IMRT, then OF conventional techniques are best. If the aim is to irradiate levels III and IV or level IV only, then 6 MV SF non-IMRT is the simplest technique.


Assuntos
Irradiação Linfática/métodos , Algoritmos , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos , Pescoço , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Alta Energia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA