Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Med Entomol ; 60(6): 1197-1213, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37862067

RESUMO

Rift Valley fever virus (RVFV) (Bunyavirales: Phlebovirus) is a prominent vector-borne zoonotic disease threat to global agriculture and public health. Risks of introduction into nonendemic regions are tied to changing climate regimes and other dynamic environmental factors that are becoming more prevalent, as well as virus evolutionary factors and human/animal movement. Endemic to the African continent, RVFV has caused large epizootics at the decadal scale since the early 20th century but has spread to the Arabian Peninsula and shows increasing patterns of interepizootic transmission on the annual scale. This virus can be transmitted by mosquitoes as well as through direct contact with infected tissues and can cause sporadic to widespread morbidity and mortality in domestic ungulate livestock as well as humans. High viremias in infected livestock moved for legal and illegal trade as well as in infected mosquitoes or human travelers can spread this virus worldwide. With increasing global commerce, it is likely RVFV will be introduced to new areas with suitable hosts, mosquito vector species, and environments. However, the strong mosquito component of RVFV epidemiology combined with advancements in vaccines, diagnostics, and virus evolutionary factors create opportunities for strategies to leverage models of connectivity among potential source and emerging regions to target surveillance and mitigation activities to reduce the risk of RVFV introduction, or contain the virus should it be introduced, into new regions.


Assuntos
Culicidae , Phlebovirus , Febre do Vale de Rift , Vírus da Febre do Vale do Rift , Animais , Humanos , Febre do Vale de Rift/epidemiologia , Febre do Vale de Rift/prevenção & controle , Zoonoses/prevenção & controle
2.
Vector Borne Zoonotic Dis ; 23(12): 645-652, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37672628

RESUMO

Background: Japanese encephalitis virus (JEV) is a mosquito-borne zoonotic flavivirus and the leading cause of pediatric encephalitis in the Asian Pacific region. The transmission cycle primarily involves Culex spp. mosquitoes and Ardeid birds, with domestic pigs (Sus scrofa domestica) being the source of infectious viruses for the spillover of JEV from the natural endemic transmission cycle into the human population. Although many studies have concluded that domestic pigs play an important role in the transmission cycle of JEV, and infection of humans, the role of feral pigs in the transmission of JEV remains unclear. Since domestic and feral pigs are the same species, and because feral pig populations in the United States are increasing and expanding geographically, the current study aimed to test the hypothesis that if JEV were introduced into the United States, feral pigs might play a role in the transmission cycle. Materials and Methods: Sinclair miniature pigs, that exhibit the feral phenotype, were intradermally inoculated with JEV genotype Ib. These pigs were derived from crossing miniature domestic pig with four strains of feral pigs and were used since obtaining feral swine was not possible. Results: The Sinclair miniature pigs became viremic and displayed pathological outcomes similar to those observed in domestic swine. Conclusion: Based on these findings, we conclude that in the event of JEV being introduced into the United States, feral pig populations could contribute to establishment and maintenance of a transmission cycle of JEV and could lead to the virus becoming endemic in the United States.


Assuntos
Culex , Culicidae , Vírus da Encefalite Japonesa (Espécie) , Encefalite Japonesa , Animais , Suínos , Humanos , Criança , Vírus da Encefalite Japonesa (Espécie)/genética , Encefalite Japonesa/epidemiologia , Encefalite Japonesa/veterinária , Porco Miniatura , Aves , Fenótipo
3.
Viruses ; 13(11)2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34835074

RESUMO

Epizootic hemorrhagic disease (EHD) is an insect-transmitted viral disease of wild and domestic ruminants. It was first described following a 1955 epizootic in North American white-tailed deer (Odocoileus virginianus), a species which is highly susceptible to the causative agent of EHD, epizootic hemorrhagic disease virus (EHDV). EHDV has been detected globally across tropical and temperate regions, largely corresponding to the presence of Culicoides spp. biting midges which transmit the virus between ruminant hosts. It regularly causes high morbidity and mortality in wild and captive deer populations in endemic areas during epizootics. Although cattle historically have been less susceptible to EHDV, reports of clinical disease in cattle have increased in the past two decades. There is a pressing need to identify new methods to prevent and mitigate outbreaks and reduce the considerable impacts of EHDV on livestock and wildlife. This review discusses recent research advancements towards the control of EHDV, including the development of new investigative tools and progress in basic and applied research focused on virus detection, disease mitigation, and vector control. The potential impacts and implications of these advancements on EHD management are also discussed.


Assuntos
Vírus da Doença Hemorrágica Epizoótica/fisiologia , Infecções por Reoviridae/prevenção & controle , Infecções por Reoviridae/veterinária , Animais , Bovinos , Ceratopogonidae/fisiologia , Ceratopogonidae/virologia , Cervos , Surtos de Doenças/prevenção & controle , Surtos de Doenças/veterinária , Vírus da Doença Hemorrágica Epizoótica/isolamento & purificação , Vírus da Doença Hemorrágica Epizoótica/patogenicidade , Controle de Insetos/tendências , Insetos Vetores/fisiologia , Insetos Vetores/virologia , Infecções por Reoviridae/transmissão , Infecções por Reoviridae/virologia , Sorogrupo
4.
Pathogens ; 10(11)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34832623

RESUMO

Japanese encephalitis virus (JEV) is a zoonotic mosquito-borne pathogen that regularly causes severe neurological disease in humans in Southeast Asia and the Western Pacific region. Pigs are one of the main amplifying hosts of JEV and play a central role in the virus transmission cycle. The objective of this study was to identify in vitro cell systems to investigate early effects of JEV infection including viral replication and host cell death. Here, we demonstrate the susceptibility of several porcine cell lines to the attenuated genotype III JEV strain SA14-14-2. Monolayers of porcine nasal turbinate (PT-K75), kidney (SK-RST), testis (ST), and monocyte-derived macrophage (CΔ2+) cells were infected with SA14-14-2 for up to five days at a multiplicity of infection (MOI) of 0.1. The hamster kidney cell line BHK-21, previously shown to be susceptible to SA14-14-2, was used as a positive control. Culture supernatants and cells were collected between 0 and 120 h post infection (hpi), and monolayers were observed for cytopathic effect (CPE) using brightfield microscopy. The number of infectious virus particles was quantified by plaque assay and cell viability was determined using trypan blue staining. An indirect immunofluorescence assay was used to detect the presence of JEV NS1 antigens in cells infected at 1 MOI. All four porcine cell lines demonstrated susceptibility to SA14-14-2 and produced infectious virus by 12 hpi. Virus titers peaked at 48 hpi in CΔ2+, BHK-21, and SK-RST cells, at 72 hpi in PT-K75, and at 120 hpi in ST cells. CPE was visible in infected CΔ2+ and BHK-21 cells, but not the other three cell lines. The proportion of viable cells, as measured by trypan blue exclusion, declined after 24 hpi in BHK-21 and 48 hpi in CΔ2+ cells, but did not substantially decline in SK-RST, PT-K75 or ST cells. At 48 hpi, JEV NS1 was detected in all infected cell lines by fluorescence microscopy. These findings demonstrate several porcine cell lines which have the potential to serve as useful research tools for investigating JEV infection dynamics and host cell mechanisms in a natural amplifying host species, such as pigs, in vitro.

5.
Int J Mol Sci ; 22(15)2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34361052

RESUMO

Colon cancer (CC) is considered a high-risk cancer in developed countries. Its etiology is correlated with a high consumption of red meat and low consumption of plant-based foods, including whole grains. Sorghum bran is rich in polyphenols. This study aimed to determine whether different high-phenolic sorghum brans suppress tumor formation in a genetic CC rodent model and elucidate mechanisms. Tissue culture experiments used colorectal cancer cell lines SW480, HCT-116 and Caco-2 and measured protein expression, and protein activity. The animal model used in this study was APC Min+/mouse model combined with dextram sodium sulfate. High phenolic sorghum bran extract treatment resulted in the inhibition of proliferation and induced apoptosis in CC cell lines. Treatment with high phenolic sorghum bran extracts repressed TNF-α-stimulated NF-κB transactivation and IGF-1-stimulated PI3K/AKT pathway via the downregulation of ß-catenin transactivation. Furthermore, high-phenolic sorghum bran extracts activated AMPK and autophagy. Feeding with high-phenolic sorghum bran for 6 weeks significantly suppressed tumor formation in an APC Min/+ dextran sodium sulfate promoted CC mouse model. Our data demonstrates the potential application of high-phenolic sorghum bran as a functional food for the prevention of CC.


Assuntos
Proteína da Polipose Adenomatosa do Colo/fisiologia , Neoplasias Colorretais/tratamento farmacológico , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Extratos Vegetais/farmacologia , Sorghum/química , Animais , Apoptose , Proliferação de Células , Neoplasias Colorretais/induzido quimicamente , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Feminino , Humanos , Masculino , Camundongos , Células Tumorais Cultivadas
6.
Parasit Vectors ; 14(1): 214, 2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33879234

RESUMO

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a recently emerged coronavirus that is the causative agent of the coronavirus disease 2019 (COVID-19) pandemic. COVID-19 in humans is characterized by a wide range of symptoms that range from asymptomatic to mild or severe illness including death. SARS-CoV-2 is highly contagious and is transmitted via the oral-nasal route through droplets and aerosols, or through contact with contaminated fomites. House flies are known to transmit bacterial, parasitic and viral diseases to humans and animals as mechanical vectors. Previous studies have shown that house flies can mechanically transmit coronaviruses, such as turkey coronavirus; however, the house fly's role in SARS-CoV-2 transmission has not yet been explored. The goal of this work was to investigate the potential of house flies to mechanically transmit SARS-CoV-2. For this purpose, it was determined whether house flies can acquire SARS-CoV-2, harbor live virus and mechanically transmit the virus to naive substrates and surfaces. METHODS: Two independent studies were performed to address the study objectives. In the first study, house flies were tested for infectivity after exposure to SARS-CoV-2-spiked medium or milk. In the second study, environmental samples were tested for infectivity after contact with SARS-CoV-2-exposed flies. During both studies, samples were collected at various time points post-exposure and evaluated by SARS-CoV-2-specific RT-qPCR and virus isolation. RESULTS: All flies exposed to SARS-CoV-2-spiked media or milk substrates were positive for viral RNA at 4 h and 24 h post-exposure. Infectious virus was isolated only from the flies exposed to virus-spiked milk but not from those exposed to virus-spiked medium. Moreover, viral RNA was detected in environmental samples after contact with SARS-CoV-2 exposed flies, although no infectious virus was recovered from these samples. CONCLUSIONS: Under laboratory conditions, house flies acquired and harbored infectious SARS-CoV-2 for up to 24 h post-exposure. In addition, house flies were able to mechanically transmit SARS-CoV-2 genomic RNA to the surrounding environment up to 24 h post-exposure. Further studies are warranted to determine if house fly transmission occurs naturally and the potential public health implications of such events.


Assuntos
COVID-19/transmissão , Moscas Domésticas/virologia , Insetos Vetores/virologia , RNA Viral/análise , SARS-CoV-2/isolamento & purificação , Animais , Chlorocebus aethiops , Feminino , Células Vero
7.
J Med Entomol ; 58(4): 1948-1951, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-33686400

RESUMO

SARS-CoV-2 is a recently emerged, highly contagious virus and the cause of the current COVID-19 pandemic. It is a zoonotic virus, although its animal origin is not clear yet. Person-to-person transmission occurs by inhalation of infected droplets and aerosols, or by direct contact with contaminated fomites. Arthropods transmit numerous viral, parasitic, and bacterial diseases; however, the potential role of arthropods in SARS-CoV-2 transmission is not fully understood. Thus far, a few studies have demonstrated that SARS-CoV-2 replication is not supported in cells from certain insect species nor in certain species of mosquitoes after intrathoracic inoculation. In this study, we expanded the work of SARS-CoV-2 susceptibility to biting insects after ingesting a SARS-CoV-2-infected bloodmeal. Species tested included Culicoides sonorensis (Wirth & Jones) (Diptera: Ceratopogonidae) biting midges, as well as Culex tarsalis (Coquillett) and Culex quinquefasciatus (Say) mosquitoes (Diptera: Culicidae), all known biological vectors for numerous RNA viruses. Arthropods were allowed to feed on SARS-CoV-2-spiked blood and at a time point postinfection analyzed for the presence of viral RNA and infectious virus. Additionally, cell lines derived from C. sonorensis (W8a), Aedes aegypti (Linnaeus) (Diptera: Culicidae) (C6/36), Cx. quinquefasciatus (HSU), and Cx. tarsalis (CxTrR2) were tested for SARS-CoV-2 susceptibility. Our results indicate that none of the biting insects, nor the insect cell lines evaluated support SARS-CoV-2 replication, suggesting that these species are unable to be biological vectors of SARS-CoV-2.


Assuntos
Ceratopogonidae/virologia , Culicidae/virologia , Mosquitos Vetores/virologia , SARS-CoV-2 , Animais , COVID-19/transmissão , Feminino , Interações Hospedeiro-Patógeno
8.
Antioxidants (Basel) ; 9(12)2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33353009

RESUMO

Sorghum is an important cereal with diverse phenolic compounds that have potential health promoting benefits. The current study comparatively characterized the phenolic contents of two novel black-seeded sorghum lines (SC84 and PI570481) using different extraction systems (water, ethanol and their acidified counterparts) and evaluated their antioxidant and anti-inflammatory activities. Phenolic compositions were determined by spectrophotometric assays and HPLC analysis. Antioxidant activities were assessed by radical scavenging effects on nitric oxide (NO) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radicals, and the oxygen radical absorbance capacity (ORAC). Anti-inflammatory capacity was estimated by measuring levels of pro-inflammatory markers produced by lipopolysaccharide (LPS)-induced RAW 264.7 macrophages. Results showed that effects of solvent types and HCl on extraction efficiency differed among phenolic compounds and sorghum samples. Tannins were the most dominant polyphenols in the studied extracts (11.11-136.11 mg epicatechin equivalent/g sorghum). Sorghum extracts exerted more potent scavenging activity on DPPH than NO radicals. In LPS-activated RAW264.7 cells, sorghum extracts dose-dependently inhibited the production of NO, interleukin-6 (IL-6), and intracellular reactive oxygen species (ROS), with ethanolic extracts showing greater anti-inflammatory activity. Positive correlations were noted between tannin content and DPPH radical scavenging activity, and anti-inflammatory capacity. These results suggest the potential role of tannin-rich sorghum extracts against inflammation and associated diseases.

9.
FEMS Microbiol Lett ; 367(7)2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32188994

RESUMO

Polyphenols derived from a variety of plants have demonstrated antimicrobial activity against diverse microbial pathogens. Legionella pneumophila is an intracellular bacterial pathogen that opportunistically causes a severe inflammatory pneumonia in humans, called Legionnaires' Disease, via replication within macrophages. Previous studies demonstrated that tea polyphenols attenuate L. pneumophila intracellular replication within mouse macrophages via increased tumor necrosis factor (TNF) production. Sorghum bicolor is a sustainable cereal crop that thrives in arid environments and is well-suited to continued production in warming climates. Sorghum polyphenols have anticancer and antioxidant properties, but their antimicrobial activity has not been evaluated. Here, we investigated the impact of sorghum polyphenols on L. pneumophila intracellular replication within RAW 264.7 mouse macrophages. Sorghum high-polyphenol extract (HPE) attenuated L. pneumophila intracellular replication in a dose-dependent manner but did not impair either bacterial replication in rich media or macrophage viability. Moreover, HPE treatment enhanced both TNF and IL-6 secretion from L. pneumophila infected macrophages. Thus, polyphenols derived from sorghum enhance macrophage restriction of L. pneumophila, likely via increased pro-inflammatory cytokine production. This work reveals commonalities between plant polyphenol-mediated antimicrobial activity and provides a foundation for future evaluation of sorghum as an antimicrobial agent.


Assuntos
Legionella pneumophila/efeitos dos fármacos , Macrófagos/microbiologia , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Sorghum/química , Animais , Legionella pneumophila/crescimento & desenvolvimento , Camundongos , Células RAW 264.7
10.
Front Vet Sci ; 7: 48, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32118069

RESUMO

Japanese encephalitis (JE) is a zoonotic, emerging disease transmitted by mosquito vectors infected with the Japanese encephalitis virus (JEV). Its potential for emergence into susceptible regions is high, including in the United States (US), and is a reason of economic concern among the agricultural community, and to public health due to high morbidity and mortality rates in humans. While exploring the complexities of interactions involved with viral transmission, we proposed a new outlook on the role of vectors, hosts and the environment under changing conditions. For instance, the role of feral pigs may have been underappreciated in our previous work, given research keeps pointing to the importance of susceptible populations of wild swine in naïve regions as key elements for the introduction of emergent vector-borne diseases. High risk of JEV introduction has been associated with the transportation of infected mosquitoes via aircraft. Nonetheless, no JEV outbreaks have been reported in the US to date and results from a qualitative risk assessment considered the risk of establishment to be negligible under the current conditions (environmental, vector, pathogen, and host). In this work, we discuss virus-vector-host interactions and ecological factors important for virus transmission and spread, review research on the risk of JEV introduction to the US considering the implications of risk dismissal as it relates to past experiences with similar arboviruses, and reflect on future directions, challenges, and implications of a JEV incursion.

11.
Vaccines (Basel) ; 8(1)2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-32023812

RESUMO

Epizootic hemorrhagic disease virus (EHDV) is an arthropod-transmitted RNA virus and the causative agent of epizootic hemorrhagic disease (EHD) in wild and domestic ruminants. In North America, white-tailed deer (WTD) experience the highest EHD-related morbidity and mortality, although clinical disease is reported in cattle during severe epizootics. No commercially licensed EHDV vaccine is available in North America. The objective of this study was to develop and evaluate a subunit vaccine candidate to control EHD in WTD. Recombinant VP2 (rVP2) outer capsid proteins of EHDV serotypes 2 (EHDV-2) and 6 (EHDV-6) were produced in a baculovirus-expression system. Mice and cattle vaccinated with EHDV-2 or EHDV-6 rVP2 produced homologous virus-neutralizing antibodies. In an immunogenicity/efficacy study, captive-bred WTD received 2 doses of EHDV-2 rVP2 or sham vaccine, then were challenged with wild-type EHDV-2 at 30 d post vaccination. None of the rVP2-vaccinated deer developed clinical disease, no viral RNA was detected in their blood or tissues (liver, lung, spleen, kidney), and no EHDV-induced lesions were observed. Sham-vaccinated deer developed clinical disease with viremia and typical EHD vascular lesions. Here, we demonstrate a rVP2 subunit vaccine that can provide protective immunity from EHDV infection and which may serve as an effective tool in preventing clinical EHD and reducing virus transmission.

12.
Emerg Infect Dis ; 24(9): 1717-1719, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30124402

RESUMO

Rift Valley fever virus, a zoonotic arbovirus, poses major health threats to livestock and humans if introduced into the United States. White-tailed deer, which are abundant throughout the country, might be sentinel animals for arboviruses. We determined the susceptibility of these deer to this virus and provide evidence for a potentially major epidemiologic role.


Assuntos
Cervos , Febre do Vale de Rift/virologia , Vírus da Febre do Vale do Rift/patogenicidade , Animais , Animais Selvagens , Masculino , Virulência , Zoonoses/prevenção & controle
13.
Curr Opin Virol ; 27: 36-41, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29128744

RESUMO

A comparison of two geographicallly distinct viruses in the order Bunyavirales that are zoonotic and known to cause congenital abnormalities in ruminant livestock was performed. One of these viruses, Cache Valley fever virus, is found in the Americas and is primarily associated with disease in sheep. The other, Rift Valley fever virus, is found in Sub-Saharan Africa and is associated with disease in camels, cattle, goats and sheep. Neither virus has been associated with teratogenicity in humans to date. These two viruses are briefly reviewed and potential for genetic changes especially if introduced into new ecology that could affect pathogenicity are discussed.


Assuntos
Vírus Bunyamwera/patogenicidade , Infecções por Bunyaviridae/veterinária , Febre do Vale de Rift/virologia , Vírus da Febre do Vale do Rift/patogenicidade , Zoonoses/virologia , África Subsaariana/epidemiologia , América/epidemiologia , Animais , Vírus Bunyamwera/classificação , Vírus Bunyamwera/genética , Vírus Bunyamwera/isolamento & purificação , Infecções por Bunyaviridae/epidemiologia , Infecções por Bunyaviridae/transmissão , Infecções por Bunyaviridae/virologia , Camelus , Bovinos , Surtos de Doenças , Cabras , Humanos , Gado/virologia , Febre do Vale de Rift/epidemiologia , Febre do Vale de Rift/transmissão , Vírus da Febre do Vale do Rift/genética , Vírus da Febre do Vale do Rift/isolamento & purificação , Ovinos
14.
Am J Reprod Immunol ; 68(2): 107-15, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22587222

RESUMO

PROBLEM: Pregnant mares demonstrate a reduction in cytotoxic T lymphocyte (CTL) reactivity against cells from the breeding stallion. We investigated whether this effect is limited to activity against paternal major histocompatibility complex (MHC) antigens, and whether it occurs during MHC-compatible pregnancy. METHOD OF STUDY: Mares were mated to carry MHC-compatible or MHC-incompatible pregnancies. CTL activity of these mares when pregnant and non-pregnant was measured against cells from horses with MHC haplotypes unrelated to the mare or breeding stallion. RESULTS: While carrying MHC-incompatible pregnancies, mares demonstrated reduced CTL activity against lymphocytes from third-party horses in addition to those from the breeding stallion. This effect was also observed in mares carrying MHC-compatible pregnancies. CONCLUSIONS: The decrease in maternal T-cell reactivity characteristic of normal equine pregnancy is not restricted to paternal alloantigen, and occurs during MHC-matched matings. This suggests that antigen-independent mechanisms may be responsible for this reduction in cell-mediated immune activity.


Assuntos
Citotoxicidade Imunológica , Isoantígenos/imunologia , Prenhez/imunologia , Especificidade do Receptor de Antígeno de Linfócitos T/imunologia , Linfócitos T Citotóxicos/imunologia , Animais , Citotoxicidade Imunológica/fisiologia , Feminino , Cavalos , Tolerância Imunológica , Masculino , Gravidez
15.
Vet Immunol Immunopathol ; 147(1-2): 60-8, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22551980

RESUMO

The immunoreceptor NKp46 is considered to be the most consistent marker of NK cells across mammalian species. Here, we use a recombinant NKp46 protein to generate a panel of monoclonal antibodies that recognize equine NKp46. The extracellular region of equine NKp46 was expressed with equine IL-4 as a recombinant fusion protein (rIL-4/NKp46) and used as an immunogen to generate mouse monoclonal antibodies (mAbs). MAbs were first screened by ELISA for an ability to recognize NKp46, but not IL-4, or the structurally related immunoreceptor CD16. Nine mAbs were selected and were shown to recognize full-length NKp46 expressed on the surface of transfected CHO cells as a GFP fusion protein. The mAbs recognized a population of lymphocytes by flow cytometric analysis that was morphologically similar to NKp46+ cells in humans and cattle. In a study using nine horses, representative mAb 4F2 labeled 0.8-2.1% PBL with a mean fluorescence intensity consistent with gene expression data. MAb 4F2+ PBL were enriched by magnetic cell sorting and were found to express higher levels of NKP46 mRNA than 4F2- cells by quantitative RT-PCR. CD3-depleted PBL from five horses contained a higher percentage of 4F2+ cells than unsorted PBL. Using ELISA, we determined that the nine mAbs recognize three different epitopes. These mAbs will be useful tools in better understanding the largely uncharacterized equine NK cell population.


Assuntos
Anticorpos Monoclonais/imunologia , Cavalos/imunologia , Receptor 1 Desencadeador da Citotoxicidade Natural/imunologia , Animais , Anticorpos Monoclonais/biossíntese , Células CHO , Cricetinae , Cricetulus , Epitopos , Citometria de Fluxo , Interleucina-4/genética , Camundongos , Receptor 1 Desencadeador da Citotoxicidade Natural/análise , Receptor 1 Desencadeador da Citotoxicidade Natural/genética , Proteínas Recombinantes de Fusão/biossíntese
16.
Vet Immunol Immunopathol ; 146(2): 135-42, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22424928

RESUMO

The low-affinity Fc receptor CD16 plays a central role in the inflammatory and innate immune responses of many species, but has not yet been investigated in the horse. Using the predicted extracellular region of equine CD16 expressed as a recombinant fusion protein with equine IL-4 (rIL-4/CD16), we generated a panel of mouse monoclonal antibodies (mAbs) that recognize equine CD16. Nine mAbs were chosen for characterization based upon recognition of CD16, but not IL-4, in ELISA. All nine mAbs recognized full-length, cell-surface CD16 expressed as a GFP fusion protein by CHO cells, but not the closely related Fc receptor CD32 expressed in the same system. In flow cytometric analysis with equine peripheral leukocytes, the mAbs labeled cells in the granulocyte, monocyte, and lymphocyte populations in a pattern consistent with other species. Monocytes that were strongly labeled with CD16 mAb 9G5 were also positive for the LPS receptor CD14. Cytospins made with peripheral leukocytes were immunohistochemically labeled and showed mAb recognition of primarily mononuclear cells. ELISA revealed that the nine mAbs can be grouped into three patterns of epitope recognition. These new antibodies will serve as useful tools in the investigation of equine immune responses and inflammatory processes.


Assuntos
Anticorpos Monoclonais/imunologia , Cavalos/imunologia , Imunidade Inata/imunologia , Receptores de IgG/imunologia , Animais , Anticorpos Monoclonais/genética , Células CHO , Clonagem Molecular/métodos , Cricetinae , Ensaio de Imunoadsorção Enzimática/veterinária , Feminino , Citometria de Fluxo/veterinária , Cavalos/sangue , Imuno-Histoquímica/veterinária , Leucócitos Mononucleares/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia
17.
Vet Immunol Immunopathol ; 140(1-2): 90-101, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21208665

RESUMO

Several distinct T lymphocyte subpopulations with immunoregulatory activity have been described in a number of mammalian species. This study performed a phenotypic analysis of cells expressing regulatory T cell (Treg) markers in the peripheral blood of a cohort of 18 horses aged 6 months to 23 years, using antibodies to both intracellular and cell surface markers, including Forkhead box P3 (FOXP3), CD4, CD8, CD25, interferon gamma (IFNγ) and interleukin 10 (IL-10). In peripheral blood, a mean of 2.2 ± 0.2% CD4+ and 0.5 ± 0.1% CD8+ lymphocytes expressed FOXP3. The mean percentage of CD4+FOXP3+ cells was found to be significantly decreased in horses 15 years and older (1.5%) as compared to horses 6 years and younger (2.7%), but did not differ between females and males and ponies and horses. Activation of peripheral blood mononuclear cells by pokeweed mitogen resulted in induction of CD25 and FOXP3 expression by CD4+ cells, with peak expression noted after 48 and 72 h in culture respectively. Activated CD4+FOXP3+ cells expressed IFNγ (35% of FOXP3+ cells) or IL-10 (9% FOXP3+ cells). Cell sorting was performed to determine FOXP3 expression by CD4(+)CD25(-), CD4(+)CD25(dim) and CD4(+)CD25(high) subpopulations. Immediately following sorting, the percentage of CD4+FOXP3+ cells was higher within the CD4(+)CD25(high) population (22.7-26.3%) compared with the CD4(+)CD25(dim) (17% cells) but was similar within the CD4(+)CD25(dim) and CD4(+)CD25(high) cells after resting in IL-2 (9-14%). Fewer than 2% of cells in the CD4(+)CD25(-) population expressed FOXP3. These results demonstrate heterogeneity in equine lymphocyte subsets that express molecules associated with regulatory T cells. CD4+FOXP3+ cells are likely to represent natural Tregs, with CD4+FOXP3+IL-10+ cells representing either activated natural Tregs or inducible Tregs, and CD4+FOXP3+IFNγ+ cells likely to represent activated Th1 cells.


Assuntos
Cavalos/imunologia , Linfócitos T Reguladores/metabolismo , Fatores Etários , Animais , Antígenos CD/biossíntese , Antígenos CD/sangue , Biomarcadores/sangue , Western Blotting/veterinária , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Eletroforese em Gel de Poliacrilamida/veterinária , Feminino , Citometria de Fluxo/veterinária , Fatores de Transcrição Forkhead/biossíntese , Fatores de Transcrição Forkhead/sangue , Fatores de Transcrição Forkhead/genética , Cavalos/sangue , Interferon gama/biossíntese , Interferon gama/sangue , Interleucina-10/biossíntese , Interleucina-10/sangue , Masculino , Dados de Sequência Molecular , Fenótipo , Reação em Cadeia da Polimerase Via Transcriptase Reversa/veterinária , Análise de Sequência de RNA/veterinária
18.
Am J Reprod Immunol ; 64(4): 231-44, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20618178

RESUMO

The horse has proven to be a distinctively informative species in the study of pregnancy immunology for several reasons. First, unique aspects of the anatomy and physiology of the equine conceptus facilitate approaches that are not possible in other model organisms, such as non-surgical recovery of early stage embryos and conceptuses and isolation of pure trophoblast cell populations. Second, pregnant mares make strong cytotoxic antibody responses to paternal major histocompatibility complex class I antigens expressed by the chorionic girdle cells, permitting detailed evaluation of the antigenicity of these invasive trophoblasts and how they affect the maternal immune system. Third, there is abundant evidence for local maternal cellular immune responses to the invading trophoblasts in the pregnant mare. The survival of the equine fetus in the face of strong maternal immune responses highlights the complex immunoregulatory mechanisms that result in materno-fetal tolerance. Finally, the parallels between human and horse trophoblast cell types, their gene expression, and function make the study of equine pregnancy highly relevant to human health. Here, we review the most pertinent aspects of equine reproductive immunology and how studies of the pregnant mare have contributed to our understanding of maternal acceptance of the allogeneic fetus.


Assuntos
Histocompatibilidade Materno-Fetal/imunologia , Cavalos , Tolerância Imunológica , Modelos Animais , Prenhez/imunologia , Trofoblastos/imunologia , Animais , Feminino , Antígenos de Histocompatibilidade Classe I/imunologia , Cavalos/imunologia , Cavalos/fisiologia , Humanos , Placenta/imunologia , Placenta/fisiologia , Placentação , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA