Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Chem ; 10: 873462, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35518718

RESUMO

A capacitance increase phenomenon is observed for MoO3 electrodes synthesized via a sol-gel process in the presence of dopamine hydrochloride (Dopa HCl) as compared to α-MoO3 electrodes in 5M ZnCl2 aqueous electrolyte. The synthesis approach is based on a hydrogen peroxide-initiated sol-gel reaction to which the Dopa HCl is added. The powder precursor (Dopa)xMoOy, is isolated from the metastable gel using freeze-drying. Hydrothermal treatment (HT) of the precursor results in the formation of MoO3 accompanied by carbonization of the organic molecules; designated as HT-MoO3/C. HT of the precipitate formed in the absence of dopamine in the reaction produced α-MoO3, which was used as a reference material in this study (α-MoO3-ref). Scanning electron microscopy (SEM) images show a nanobelt morphology for both HT-MoO3/C and α-MoO3-ref powders, but with distinct differences in the shape of the nanobelts. The presence of carbonaceous content in the structure of HT-MoO3/C is confirmed by FTIR and Raman spectroscopy measurements. X-ray diffraction (XRD) and Rietveld refinement analysis demonstrate the presence of α-MoO3 and h-MoO3 phases in the structure of HT-MoO3/C. The increased specific capacitance delivered by the HT-MoO3/C electrode as compared to the α-MoO3-ref electrode in 5M ZnCl2 electrolyte in a -0.25-0.70 V vs. Ag/AgCl potential window triggered a more detailed study in an expanded potential window. In the 5M ZnCl2 electrolyte at a scan rate of 2 mV s-1, the HT-MoO3/C electrode shows a second cycle capacitance of 347.6 F g-1. The higher electrochemical performance of the HT-MoO3/C electrode can be attributed to the presence of carbon in its structure, which can facilitate electron transport. Our study provides a new route for further development of metal oxides for energy storage applications.

2.
Nanoscale ; 12(37): 19191-19202, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32926030

RESUMO

Palladium catalyzed cross-coupling reactions represent a significant advancement in contemporary organic synthesis as these reactions are of strategic importance in the area of pharmaceutical drug discovery and development. Supported palladium-based catalysts are highly sought-after in carbon-carbon bond forming catalytic processes to ensure catalyst recovery and reuse while preventing product contamination. This paper reports the development of heterogeneous Pd-based bimetallic catalysts supported on fumed silica that have high activity and selectivity matching those of homogeneous catalysts, eliminating the catalyst's leaching and sintering and allowing efficient recycling of the catalysts. Palladium and base metal (Cu, Ni or Co) contents of less than 1.0 wt% loading are deposited on a mesoporous fumed silica support (surface area SABET = 350 m2 g-1) using strong electrostatic adsorption (SEA) yielding homogeneously alloyed nanoparticles with an average size of 1.3 nm. All bimetallic catalysts were found to be highly active toward Suzuki cross-coupling (SCC) reactions with superior activity and stability for the CuPd/SiO2 catalyst. A low CuPd/SiO2 loading (Pd: 0.3 mol%) completes the conversion of bromobenzene and phenylboronic acid to biphenyl in 30 minutes under ambient conditions in water/ethanol solvent. In contrast, monometallic Pd/SiO2 (Pd: 0.3 mol%) completes the same reaction in three hours under the same conditions. The combination of Pd with the base metals helps in retaining the Pd0 status by charge donation from the base metals to Pd, thus lowering the activation energy of the aryl halide oxidative addition step. Along with its exceptional activity, CuPd/SiO2 exhibits excellent recycling performance with a turnover frequency (TOF) of 280 000 h-1 under microwave reaction conditions at 60 °C. Our study demonstrates that SEA is an excellent synthetic strategy for depositing ultra-small Pd-based bimetallic nanoparticles on porous silica for SCC. This avenue not only provides highly active and sintering-resistant catalysts but also significantly lowers Pd contents in the catalysts without compromising catalytic activity, making the catalysts very practical for large-scale applications.

3.
Chemistry ; 26(61): 13896-13903, 2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-32588456

RESUMO

The rechargeable lithium-sulfur (Li-S) battery is a promising candidate for the next generation of energy storage technology, owing to the high theoretical capacity, high specific energy density, and low cost of electrode materials. The main drawbacks in the development of long-life Li-S batteries are capacity fading and the sluggish kinetics at the cathode caused by the polysulfides shuttle. These limitations are addressed through the design of novel nanocages containing cobalt phosphide (CoP) nanoparticles embedded in highly porous nitrogen-doped carbon (CoP-N-GC) by thermal annealing of ZIF-67 in a reductive atmosphere followed by a phosphidation step using sodium hypophosphite. The CoP nanoparticles, with large surface area and uniform homogeneous distribution within the N-doped nanocage graphitic carbon, act as electrocatalysts to suppress the shuttle of soluble polysulfides through strong chemical interactions and catalyze the sulfur redox. As a result, the S@CoP-N-GC electrode delivers an extremely high specific capacity of 1410 mA h g-1 at 0.1 C (1 C=1675 mA g-1 ) with an excellent coulombic efficiency of 99.7 %. Moreover, capacity retention from 864 to 678 mA h g-1 is obtained after 460 cycles with a very low decay rate of 0.046 % per cycle at 0.5 C. Therefore, the combination of the CoP catalyst and polar conductive porous carbon effectively stabilizes the sulfur cathode, enhancing the electrochemical performance and stability of the battery.

4.
ACS Appl Mater Interfaces ; 9(41): 35802-35810, 2017 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-28956436

RESUMO

Development of efficient sorbents for carbon dioxide (CO2) capture from flue gas or its removal from natural gas and landfill gas is very important for environmental protection. A new series of heteroatom-doped porous carbon was synthesized directly from pyrazole/KOH by thermolysis. The resulting pyrazole-derived carbons (PYDCs) are highly doped with nitrogen (14.9-15.5 wt %) as a result of the high nitrogen-to-carbon ratio in pyrazole (43 wt %) and also have a high oxygen content (16.4-18.4 wt %). PYDCs have a high surface area (SABET = 1266-2013 m2 g-1), high CO2 Qst (33.2-37.1 kJ mol-1), and a combination of mesoporous and microporous pores. PYDCs exhibit significantly high CO2 uptakes that reach 2.15 and 6.06 mmol g-1 at 0.15 and 1 bar, respectively, at 298 K. At 273 K, the CO2 uptake improves to 3.7 and 8.59 mmol g-1 at 0.15 and 1 bar, respectively. The reported porous carbons also show significantly high adsorption selectivity for CO2/N2 (128) and CO2/CH4 (13.4) according to ideal adsorbed solution theory calculations at 298 K. Gas breakthrough studies of CO2/N2 (10:90) at 298 K showed that PYDCs display excellent separation properties. The ability to tailor the physical properties of PYDCs as well as their chemical composition provides an effective strategy for designing efficient CO2 sorbents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA