Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Rep Prog Phys ; 87(8)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38215499

RESUMO

Molecules containing short-lived, radioactive nuclei are uniquely positioned to enable a wide range of scientific discoveries in the areas of fundamental symmetries, astrophysics, nuclear structure, and chemistry. Recent advances in the ability to create, cool, and control complex molecules down to the quantum level, along with recent and upcoming advances in radioactive species production at several facilities around the world, create a compelling opportunity to coordinate and combine these efforts to bring precision measurement and control to molecules containing extreme nuclei. In this manuscript, we review the scientific case for studying radioactive molecules, discuss recent atomic, molecular, nuclear, astrophysical, and chemical advances which provide the foundation for their study, describe the facilities where these species are and will be produced, and provide an outlook for the future of this nascent field.

2.
Rev Sci Instrum ; 93(12): 121101, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36586922

RESUMO

We describe the cold-atom vacuum standards (CAVS) under development at the National Institute of Standards and Technology (NIST). The CAVS measures pressure in the ultra-high and extreme-high vacuum regimes by measuring the loss rate of sub-millikelvin sensor atoms from a magnetic trap. Ab initio quantum scattering calculations of cross sections and rate coefficients relate the density of background gas molecules or atoms to the loss rate of ultra-cold sensor atoms. The resulting measurement of pressure through the ideal gas law is traceable to the second and the kelvin, making it a primary realization of the pascal. At NIST, two versions of the CAVS have been constructed: a laboratory standard used to achieve the lowest possible uncertainties and pressures, and a portable version that is a potential replacement for the Bayard-Alpert ionization gauge. Both types of CAVSs are connected to a combined extreme-high vacuum flowmeter and dynamic expansion system to enable sensing of a known pressure of gas. In the near future, we anticipate being able to compare the laboratory scale CAVS, the portable CAVS, and the flowmeter/dynamic expansion system to validate the operation of the CAVS as both a standard and vacuum gauge.

3.
Comput Phys Commun ; 2702020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36733946

RESUMO

We present a Python object-oriented computer program for simulating various aspects of laser cooling physics. Our software is designed to be both easy to use and adaptable, allowing the user to specify the level structure, magnetic field profile, or the laser beams' geometry, detuning, and intensity. The program contains three levels of approximation for the motion of the atom, applicable in different regimes offering cross checks for calculations and computational efficiency depending on the physical situation. We test the software by reproducing well-known phenomena, such as damped Rabi flopping, electromagnetically induced transparency, stimulated Raman adiabatic passage, and optical molasses. We also use our software package to quantitatively simulate recoil-limited magneto-optical traps, like those formed on the narrow 1S0 → 3P1 transition in 88Sr and 87Sr.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA