Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 11(4): e0152602, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27054319

RESUMO

Elastic energy returned from passive-elastic structures of the lower limb is fundamental in lowering the mechanical demand on muscles during running. The purpose of this study was to investigate the two length-modulating mechanisms of the plantar fascia, namely medial longitudinal arch compression and metatarsophalangeal joint (MPJ) excursion, and to determine how these mechanisms modulate strain, and thus elastic energy storage/return of the plantar fascia during running. Eighteen runners (9 forefoot and 9 rearfoot strike) performed three treadmill running trials; unrestricted shod, shod with restricted arch compression (via an orthotic-style insert), and barefoot. Three-dimensional motion capture and ground reaction force data were used to calculate lower limb kinematics and kinetics including MPJ angles, moments, powers and work. Estimates of plantar fascia strain due to arch compression and MPJ excursion were derived using a geometric model of the arch and a subject-specific musculoskeletal model of the plantar fascia, respectively. The plantar fascia exhibited a typical elastic stretch-shortening cycle with the majority of strain generated via arch compression. This strategy was similar in fore- and rear-foot strike runners. Restricting arch compression, and hence the elastic-spring function of the arch, was not compensated for by an increase in MPJ-derived strain. In the second half of stance the plantar fascia was found to transfer energy between the MPJ (energy absorption) and the arch (energy production during recoil). This previously unreported energy transfer mechanism reduces the strain required by the plantar fascia in generating useful positive mechanical work at the arch during running.


Assuntos
Fenômenos Biomecânicos , Fáscia/fisiologia , Articulação Metatarsofalângica/fisiologia , Corrida/fisiologia , Adulto , Pé/fisiologia , Órtoses do Pé , Humanos , Masculino , Modelos Biológicos , Estresse Mecânico
2.
Sci Rep ; 6: 19403, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26783259

RESUMO

The energy-sparing spring theory of the foot's arch has become central to interpretations of the foot's mechanical function and evolution. Using a novel insole technique that restricted compression of the foot's longitudinal arch, this study provides the first direct evidence that arch compression/recoil during locomotion contributes to lowering energy cost. Restricting arch compression near maximally (~80%) during moderate-speed (2.7 ms(-1)) level running increased metabolic cost by + 6.0% (p < 0.001, d = 0.67; unaffected by foot strike technique). A simple model shows that the metabolic energy saved by the arch is largely explained by the passive-elastic work it supplies that would otherwise be done by active muscle. Both experimental and model data confirm that it is the end-range of arch compression that dictates the energy-saving role of the arch. Restricting arch compression had no effect on the cost of walking or incline running (3°), commensurate with the smaller role of passive-elastic mechanics in these gaits. These findings substantiate the elastic energy-saving role of the longitudinal arch during running, and suggest that arch supports used in some footwear and orthotics may increase the cost of running.


Assuntos
Fenômenos Biomecânicos , Locomoção , Metatarso/anatomia & histologia , Metatarso/fisiologia , Modelos Biológicos , Atividade Motora , Humanos , Corrida , Caminhada
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA