Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Clin Kidney J ; 17(8): sfae179, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39104870

RESUMO

Background: Patients with membranous nephropathy (MN) and poor kidney function or active disease despite previous immunosuppression are underrepresented in clinical trials. It is unknown how effective rituximab is in this population. Methods: This prospective, multi-centre, single-arm, real-world study of patients with active MN [urine protein-creatinine ratio (uPCR) >350 mg/mmol and serum albumin <30 g/L, or a fall in estimated glomerular filtration rate (eGFR) of at least 20% or more over at least 3 months] evaluated rituximab in those with contraindications to calcineurin inhibitors and cytotoxic therapy. The primary outcome was change in rate of eGFR decline before and after rituximab. Complete or partial remission were defined as uPCR <30 mg/mmol or uPCR <350 mg/mmol with a ≥50% fall from baseline, respectively. Results: A total of 180 patients [median age 59 years, interquartile range (IQR) 48-68] received rituximab and were followed up for a median duration of 17 months. Seventy-seven percent had prior immunosuppression. Median eGFR and uPCR at baseline were 49.2 mL/min/1.73 m2 (IQR 34.4-80.6) and 766 mg/mmol (IQR 487-1057), respectively. The annual rate of decline of eGFR fell from 13.9 to 1.7 mL/min/1.73 m2/year following rituximab (Z score = 2.48, P < .0066). At 18 months 12% and 42% of patients were in complete or partial remission, respectively. Rituximab was well tolerated; patient survival was 95.6% at 2 years and in patients in whom eGFR was available, kidney survival was 93% at 2 years. Conclusion: Rituximab significantly reduced the rate of eGFR decline in active MN including those who had received prior immunosuppression or with poor baseline kidney function.

2.
Lake Reserv Manag ; 39(2): 141-155, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37969555

RESUMO

Littoral habitat is critical for lake biota but is adversely affected by residential shoreland development through the loss and reduced structural complexity of lakeshore vegetation. There currently exists no assessment methodology for evaluating littoral habitat condition of individual lakes in northeastern US. We addressed this assessment need by creating multi-metric indices of littoral habitat condition that focus on lakeshore residential development as the primary stressor. We did this by using habitat metrics derived primarily from National Lake Assessment (NLA) Physical Habitat (PHAB) survey field observations to create Linear Discriminant Analysis (LDA) models that assign lakeshore stations into littoral habitat condition categories. Lake PHAB survey data were used from New England NLA surveys as well as state-level surveys completed in Maine, New Hampshire, and Vermont. Prediction success rates in New England models averaged 83%. The Maine LDA models, which used finer scale survey methods, had an average prediction success rate of 89%. We used 95% bootstrapped confidence intervals to make assessment designations of natural (meeting reference quality), diminished (not meeting reference quality), or intermediate (existing between natural and diminished) littoral habitat condition for each lake. Our results show that efficacious single-lake littoral habitat assessments may be completed within the framework of NLA PHAB methodology, but confidence in assessment results, and therefore better-informed management decisions, can be improved with finer-scale observation data.

3.
Clin Cancer Res ; 29(16): 3214-3224, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37327318

RESUMO

PURPOSE: Laser interstitial thermal therapy (LITT) is an effective minimally invasive treatment option for intracranial tumors. Our group produced plasmonics-active gold nanostars (GNS) designed to preferentially accumulate within intracranial tumors and amplify the ablative capacity of LITT. EXPERIMENTAL DESIGN: The impact of GNS on LITT coverage capacity was tested in ex vivo models using clinical LITT equipment and agarose gel-based phantoms of control and GNS-infused central "tumors." In vivo accumulation of GNS and amplification of ablation were tested in murine intracranial and extracranial tumor models followed by intravenous GNS injection, PET/CT, two-photon photoluminescence, inductively coupled plasma mass spectrometry (ICP-MS), histopathology, and laser ablation. RESULTS: Monte Carlo simulations demonstrated the potential of GNS to accelerate and specify thermal distributions. In ex vivo cuboid tumor phantoms, the GNS-infused phantom heated 5.5× faster than the control. In a split-cylinder tumor phantom, the GNS-infused border heated 2× faster and the surrounding area was exposed to 30% lower temperatures, with margin conformation observed in a model of irregular GNS distribution. In vivo, GNS preferentially accumulated within intracranial tumors on PET/CT, two-photon photoluminescence, and ICP-MS at 24 and 72 hours and significantly expedited and increased the maximal temperature achieved in laser ablation compared with control. CONCLUSIONS: Our results provide evidence for use of GNS to improve the efficiency and potentially safety of LITT. The in vivo data support selective accumulation within intracranial tumors and amplification of laser ablation, and the GNS-infused phantom experiments demonstrate increased rates of heating, heat contouring to tumor borders, and decreased heating of surrounding regions representing normal structures.


Assuntos
Neoplasias Encefálicas , Hipertermia Induzida , Humanos , Animais , Camundongos , Ouro , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Neoplasias Encefálicas/cirurgia , Hipertermia Induzida/métodos , Lasers
4.
Nanoscale ; 15(13): 6396-6407, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36924128

RESUMO

Nanoparticle-based platforms are gaining strong interest in plant biology and bioenergy research to monitor and control biological processes in whole plants. However, in vivo monitoring of biomolecules using nanoparticles inside plant cells remains challenging due to the impenetrability of the plant cell wall to nanoparticles beyond the exclusion limits (5-20 nm). To overcome this physical barrier, we have designed unique bimetallic silver-coated gold nanorods (AuNR@Ag) capable of entering plant cells, while conserving key plasmonic properties in the near-infrared (NIR). To demonstrate cellular internalization and tracking of the nanorods inside plant tissue, we used a comprehensive multimodal imaging approach that included transmission electron microscopy (TEM), confocal fluorescence microscopy, two-photon luminescence (TPL), X-ray fluorescence microscopy (XRF), and photoacoustics imaging (PAI). We successfully acquired SERS signals of nanorods in vivo inside plant cells of tobacco leaves. On the same leaf samples, we applied orthogonal imaging methods, TPL and PAI techniques for in vivo imaging of the nanorods. This study first demonstrates the intracellular internalization of AuNR@Ag inside whole plant systems for in vivo SERS analysis in tobacco cells. This work demonstrates the potential of this nanoplatform as a new nanotool for intracellular in vivo biosensing for plant biology.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Nanotubos , Células Vegetais , Imagem Multimodal , Ouro , Análise Espectral Raman/métodos
5.
Environ Sci Process Impacts ; 24(1): 89-101, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-34904604

RESUMO

Phosphorus (P) is one of the key limiting nutrients for algal growth in most fresh surface waters. Understanding the determinants of P accumulation in the water column of lakes of interest, and the prediction of its concentration is important to water quality managers and other stakeholders. We hypothesized that lake physicochemical, climate, and watershed land-use attributes control lake P concentration. We collected relevant data from 126 lakes in Maine, USA, to determine the major drivers for summer total epilimnetic P concentrations. Predictive regression-based models featured lake external and internal drivers. The most important land-use driver was the extent of agriculture in the watershed. Lake average depth was the most important physical driver, with shallow lakes being most susceptible to high P concentrations; shallow lakes often stratify weakly and are most subject to internal mixing. The sediment NaOH-extracted aluminum (Al) to bicarbonate/dithionite-extracted P molar ratio was the most important sediment chemical driver; lakes with a high hypolimnetic P release have low ratios. The dissolved organic carbon (DOC) concentration was an important water column chemical driver; lakes having a high DOC concentration generally had higher epilimnetic P concentrations. Precipitation and temperature, two important climate/weather variables, were not significant drivers of epilimnetic P in the predictive models. Because lake depth and sediment quality are fixed in the short-term, the modeling framework serves as a quantitative lake management tool for stakeholders to assess the vulnerability of individual lakes to watershed development, particularly agriculture. The model also enables decisions for sustainable development in the watershed and lake remediation if sediment quality is conducive to internal P release. The findings of this study may be applied to bloom metrics more directly to support lake and watershed management actions.


Assuntos
Lagos , Fósforo , Alumínio/análise , Matéria Orgânica Dissolvida , Fósforo/análise , Qualidade da Água
6.
Ecol Appl ; 31(6): e02361, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33884703

RESUMO

Absence of dissolved oxygen (anoxia) in the hypolimnion of lakes can eliminate habitat for sensitive species and may induce the release of sediment-bound phosphorus. Lake anoxia generally results from decomposition of organic matter, which is exacerbated by high nutrient loads. Total phosphorus (TP) in lakes is regulated by static aspects of the lake's watershed, but lake TP can be readily increased by human activities. In some low-nutrient lakes, basin morphometry may induce naturally occurring anoxia. The occurrence of natural anoxia is especially important to consider in lake water quality assessments that compare observed conditions to expected reference conditions. To investigate the occurrence of natural vs. anthropogenically influenced anoxia, we constructed a logistic regression model to calculate the probability of low-nutrient lakes (TP < 15 µg/L) developing aerial anoxic extent ≥10% by testing the predictive potential of variables related to basin morphometry, depths of lake thermal strata, epilimnetic TP, and dissolved organic carbon (DOC). Maximum lake depth and the proportion of lake area under the top of the metalimnion were the most important variables to predict the likelihood of hypolimnetic anoxia, which correctly predicted anoxic condition in 84% of lakes (Model 1). Adding TP as a third variable to Model 1 produced a significantly improved model (Model 2) but the prediction success rate was comparable (86%). We also present a model for lakes with limited bathymetric data, which predicts anoxia with 81% accuracy based on maximum lake depth and mean thermocline depth at peak stratification. DOC was relatively low (4.3 ± 1.5 mg/L [mean ± SD]) in the study lakes and its inclusion did not improve model performance. In Model 1, lakes with an anoxic extent ≥10% of lake area had significantly higher epilimnetic TP than lakes with oxic hypolimnia, regardless of prediction category or success. Our results indicate that including TP as a variable helps refine models based on morphometry alone, but lake morphometry and stratification dynamics are the most important factors in the development of anoxic extent in low-nutrient temperate lakes. Our approach informs studies concerned with identifying key factors that influence regime shifts in a variety of ecosystems.


Assuntos
Ecossistema , Lagos , Humanos , Hipóxia , Nutrientes , Fósforo
7.
Sci Total Environ ; 737: 140212, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32783842

RESUMO

We evaluated anthropogenic Pb deposition along a west-east transect from the Adirondack Mountains, New York, USA (ADIR) region, the Vermont-New Hampshire-Maine, USA (VT-NH-ME) region, and Nova Scotia, Canada (NS) region using 47 210Pb-dated lake sediment records. We used focus-corrected Pb inventories to evaluate cumulative deposition and breakpoint analysis to evaluate possible differences in timings among regions. Peak Pb concentrations decreased from west to east (ADIR region: 52-378 mg kg-1, VT-NH-ME region: 54-253 mg kg-1, NS: 38-140 mg kg-1). Cumulative deposition of anthropogenic Pb also decreased from west to east (ADIR region: 791-1344 mg m-2, VT-NH-ME region: 209-1206 mg m-2, NS: 52-421 mg m-2). The initiation of anthropogenic Pb deposition occurred progressively later along the same transect (ADIR region: 1869-1900, VT-NH-ME region: 1874-1905, NS region: 1901-1930). Previous lead isotope studies suggest that eastern Canadian Pb deposition over the past ~150 years has originated from a mix of both Canadian and U.S. sources. The results of this study indicate that anthropogenic Pb from sources west of the ADIR region were deposited in lesser amounts from west to east and/or Pb sources reflect less population density from west to east. The timing of the initiation of anthropogenic Pb deposition in the NS region suggests that Pb from gasoline may be an important source in this region.

8.
Sci Total Environ ; 743: 140626, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32652359

RESUMO

During recent decades, increasing anthropogenic activities have affected natural ionic composition, including the strongest and most common relationship between ionic concentrations in the majority of natural global freshwaters, i.e., the Ca2+-ANC (acid neutralizing capacity) equilibrium. Using long-term monitoring data and MAGIC modelling, we evaluated effects of major present environmental stressors (synthetic fertilizers, liming, acidic deposition, forest disturbances, and climate change) on the Ca2+-ANC equilibrium. We evaluated the effects for three different types of terrestrial ecosystems, a circumneutral lowland agricultural catchment, two acid sensitive mountain forest catchments differing in forest health, and one acid sensitive alpine catchment. All catchments are in a region with the world-largest changes in fertilizing rates and acidic deposition in the 20th century, with increasing impacts until the late 1980s, and their subsequent abrupt, dramatic decreases. These strong changes resulted in a substantial disruption, followed by continuing re-establishment of the Ca2+-ANC relationship in all study waters. The shape of the disruption and the following re-establishment of its new value were dependent on the intensity, duration, and combination of stressors, as well as on catchment characteristics (bedrock composition, soil amount and composition, vegetation status, and hydrology). We conclude that a new equilibrium may deviate from its natural value due to the (1) legacy of fertilizing, acidic deposition and liming, affecting the soil Ca2+ pools, (2) forest disturbances and management practices, and (3) climate change.

9.
Environ Sci Technol ; 54(3): 1545-1553, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31909597

RESUMO

We studied photochemically induced precipitation of rare-earth elements (REEs) in water from a tributary to Plesné Lake and a tributary to Jirická Pond, Czech Republic. Both tributaries had high concentrations of dissolved organic matter (∼1.8 mmol C L-1). Filtered (0.2 µm) samples were exposed to artificial solar radiation of 350 W m-2 for 48 to 96 h, corresponding to 3 to 6 days of natural solar radiation in summer at the sampling locations. Experiments were performed with altered and unaltered pH ranging from 3.8 to 6.0. The formation of particulate REEs occurred in all exposed samples with the fastest formation observed at the original pH. The formation of particulate metals continued in irradiated samples after the end of irradiation, suggesting that photochemically induced reactions and/or continuing precipitation continue in darkness or in deeper water due to mixing. Results were compared with paleolimnological records in the Plesné Lake sediment. At pH 5.0, the photochemically induced sediment flux was 3509 nmol m-2 y-1 for Ce, corresponding to 42% of the REEs' annual sediment flux in recent sediment layers. Combining the formation rates obtained in the laboratory irradiation experiments and known 1 day incident solar radiation enabled the estimation of a possible REE sediment flux. For Plesné Lake, the photochemically induced formation of particulate REEs explained 10-44% of the REE concentrations in the upper sediment layers. Observed photochemically induced sequestration of REEs into sediments can explain a significant part of the REEs' history in the Holocene sediment.


Assuntos
Metais Terras Raras , Poluentes Químicos da Água , República Tcheca , Monitoramento Ambiental , Sedimentos Geológicos , Lagos
10.
Sci Total Environ ; 713: 136549, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-31954242

RESUMO

Lake Auburn, Maine, USA, is a historically unproductive lake that has experienced multiple algal blooms since 2011. The lake is the water supply source for a population of ~60,000. We modeled past temperature, and concentrations of dissolved oxygen (DO) and phosphorus (P) in Lake Auburn by considering the catchment and internal contributions of P as well as atmospheric factors, and predicted the change in lake water quality in response to future climate and land-use changes. A stream hydrology and P-loading model (SimplyP) was used to generate input from two major tributaries into a lake model (MyLake-Sediment) to simulate physical mixing, chemical dynamics, and sediment geochemistry in Lake Auburn from 2013 to 2017. Simulations of future lake water quality were conducted using meteorological boundary conditions derived from recent historical data and climate model projections for high greenhouse-gas emission cases. The effects of future land development on lake water quality for the 2046 to 2055 time period under different land-use and climate change scenarios were also simulated. Our results indicate that lake P enrichment is more responsive to extreme storm events than increasing air temperatures, mean precipitation, or windstorms; loss of fish habitat is driven by windstorms, and to a lesser extent an increasing water temperature; and catchment development further leads to water quality decline. All simulations also show that the lake is susceptible to both internal and external P loadings. Simulation of temperature, DO, and P proved to be an effective means for predicting the loss of water quality under changing land-use and climate scenarios.

11.
J Phys Chem B ; 123(48): 10245-10251, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31710234

RESUMO

MicroRNAs (miRNAs), small noncoding endogenous RNA molecules, are emerging as promising biomarkers for early detection of various diseases and cancers. Practical screening tools and strategies to detect these small molecules are urgently needed to facilitate the translation of miRNA biomarkers into clinical practice. In this study, a label-free biosensing technique based on surface-enhanced Raman scattering (SERS), referred to as plasmonic coupling interference (PCI), was applied for the multiplex detection of miRNA biomarkers. The sensing mechanism of the PCI technique relies on the formation of a nanonetwork consisting of nanoparticles with Raman labels located between adjacent nanoparticles that are interconnected by DNA duplexes. Because of the plasmonic coupling effect of adjacent nanoparticles in the nanonetwork, the Raman labels exhibit intense SERS signals. Such effect can be modulated by the addition of miRNA targets of interest that act as inhibitors to interfere with the formation of this nanonetwork, resulting in a diminished SERS signal. In this study, the PCI technique is theoretically analyzed, and the multiplex capability for detection of multiple miRNA cancer biomarkers is demonstrated, establishing the great potential of PCI nanoprobes as a useful diagnostic tool for medical applications.


Assuntos
MicroRNAs/sangue , Neoplasias/diagnóstico , RNA Neoplásico/sangue , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , Carbocianinas/química , Sondas de DNA/química , Corantes Fluorescentes/química , Humanos , Nanopartículas Metálicas/química , MicroRNAs/genética , Neoplasias/sangue , Neoplasias/genética , Neoplasias/patologia , RNA Neoplásico/genética , Rodaminas/química , Sensibilidade e Especificidade , Prata/química , Análise Espectral Raman/métodos , Ressonância de Plasmônio de Superfície/métodos
12.
Sci Total Environ ; 660: 876-885, 2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-30743973

RESUMO

This study explores the sources and mechanisms of dissolved phosphorus (P) mobilization under base flow conditions in a headwater stream. We characterized the relevant chemical species and processes within the watershed to investigate connections between stream sediment, surface water, and groundwater with respect to P dynamics. Waters were monitored monthly during the 2017 snow-free period for temperature, pH, dissolved oxygen, conductivity, soluble reactive P (SRP), total P, strong acid anions, strong base cations, dissolved organic carbon (DOC), Al, Fe, and Mn. Phosphorus speciation within sediment samples was determined by sequential chemical extractions. The emerging groundwater was under-saturated by up to 40% with respect to O2, with pH = 7.24, T = 7.0 °C, and SRP = 3.0 µg L-1. Groundwater PCO2 was up to ~35× the ambient PCO2 (410 ppm). Degassing of CO2 from the emerging groundwater resulted in a significant increase in pH downstream, and an increase in the SRP concentration from 3.0 to a maximum of 40.6 µg L-1. Laboratory experiments, using homogenized stream sediment, identified a reduction in the P adsorption capacity, and an increase in desorption of native P with increasing pH from ~7.25 (emerging groundwater) to ~8.50 (air-equilibrated surface water). These data allow us to identify the pH-dependent desorption from P-laden sediment as the most significant source of dissolved P in the headwater stream under base flow conditions.

13.
Langmuir ; 34(48): 14617-14623, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30407828

RESUMO

The use of plasmonic nanoplatforms has received increasing interest in a wide variety of fields ranging from theranostics to environmental sensing to plant biology. In particular, the development of plasmonic nanoparticles into ordered nanoclusters has been of special interest due to the new chemical functionalities and optical responses that they can introduce. However, achieving predetermined nanocluster architectures from bottom-up approaches in the colloidal solution state still remains a great challenge. Herein, we report a one-pot assembly approach that provides flexibility in precise control of core-satellite nanocluster architectures in the colloidal solution state. We found that the pH of the assembly medium plays a vital role in the hierarchy of the nanoclusters. The architecture along with the size of the satellite gold nanoparticles determines the optical responses of nanoclusters. Using electron microscopy and optical spectroscopy, we introduce a set of design rules for the synthesis of distinct architectures of silica-core gold satellites nanoclusters in the colloidal solution state. Our findings provide insight into advancing the colloidal solution state nanoclusters formation with predictable architectures and optical properties.

14.
Biophys Rev ; 10(5): 1385-1399, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30255222

RESUMO

The interpretation of data from absorbance spectroscopy experiments of liposomes in flow systems is often complicated by the fact that there is currently no easy way to account for scattering artefacts. This has proved particularly problematic for linear dichroism (LD) spectroscopy, which may be used to determine binding modes of small molecules, peptides and proteins to liposomes if we can extract the absorbance signal from the combined absorbance/scattering experiment. Equations for a modified Rayleigh-Gans-Debye (RGD) approximation to the turbidity (scattering) LD spectrum are available in the literature though have not been implemented. This review summarises the literature and shows how it can be implemented. The implementation proceeds by first determining volume loss that occurs when a spherical liposome is subjected to flow. Calcein fluorescence can be used for this purpose since at high concentrations (> 60 mM) it has low intensity fluorescence with maxima at 525 and 563 nm whereas at low concentrations (<1 mM) the fluorescence intensity is enhanced and the band shifts to 536 nm. The scattering calculation process yields the average axis ratios of the distorted liposome ellipsoids and extent of orientation of the liposomes in flow. The scattering calculations require methods to estimate liposome integrity, volume loss, and orientation when subjected to shear stresses under flow.

15.
Environ Sci Technol ; 52(19): 11060-11068, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30192133

RESUMO

We propose the tree rings of European Larch ( Larix decidua) as a widely available and reliable geochemical archive of local and regional changes in atmospheric mercury (Hg). Mean Hg concentrations in larch tree rings from 8 background sites across the Czech Republic ranged from 2.2 to 4.8 µg kg-1; the maximum concentrations occurred in the period 1951-1970. At 3 sites impacted by Hg-emission sources [gold amalgamation processing, caustic soda production, and lead (Pb) ore smelting] mean larch tree ring Hg concentrations were significantly elevated relative to background sites. Changes in larch tree ring Hg concentrations were temporally coherent with known activities at the sites that would alter Hg emissions; the nearly simultaneous response in tree rings indicated little or no translocation of Hg within the larch bole. Based on the present-day atmospheric Hg concentration of 1.63 ng m-3 at the intensively monitored Czech Global Mercury Observation System site and the most recent mean tree ring Hg concentration of 2.8 µg kg-1 in co-located larch trees, we developed a simple distribution model of Hg between the atmosphere and larch tree rings. We applied the model using observed changes of Hg in larch tree rings from the countrywide background sites to reconstruct past atmospheric Hg concentrations in central Europe. Modeled Hg concentrations were in agreement with annual means from the European Monitoring and Evaluation Programme observatories.


Assuntos
Larix , Mercúrio , República Tcheca , Monitoramento Ambiental , Europa (Continente) , Ouro
16.
Environ Sci Technol ; 51(1): 159-166, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-27997122

RESUMO

Climate change can reverse trends of decreasing calcium and magnesium [Ca + Mg] leaching to surface waters in granitic alpine regions recovering from acidification. Despite decreasing concentrations of strong acid anions (-1.4 µeq L-1 yr-1) during 2004-2016 in nonacidic alpine lakes in the Tatra Mountains (Central Europe), the average [Ca + Mg] concentrations increased (2.5 µeq L-1 yr-1), together with elevated terrestrial export of bicarbonate (HCO3-; 3.6 µeq L-1 yr-1). The percent increase in [Ca + Mg] concentrations in nonacidic lakes (0.3-3.2% yr-1) was significantly and positively correlated with scree proportion in the catchment area and negatively correlated with the extent of soil cover. Leaching experiments with freshly crushed granodiorite, the dominant bedrock, showed that accessory calcite and (to a lesser extent) apatite were important sources of Ca. We hypothesize that elevated terrestrial export of [Ca + Mg] and HCO3- resulted from increased weathering caused by accelerated physical erosion of rocks due to elevated climate-related mechanical forces (an increasing frequency of days with high precipitation amounts and air temperatures fluctuating around 0 °C) during the last 2-3 decades. These climatic effects on water chemistry are especially strong in catchments where fragmented rocks are more exposed to weathering, and their position is less stable than in soil.


Assuntos
Mudança Climática , Magnésio , Cálcio , Clima , Monitoramento Ambiental , Lagos , Solo
17.
Appl Opt ; 55(10): 2611-8, 2016 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-27139663

RESUMO

The interaction of light with a metal nanoshell with an off-center core generates multipoles of all orders. We show here that the matrix elements used to compute the multipole expansion coefficients can be derived analytically and, with this result, we can show explicitly how the dipole and quadrupole terms in the expansion are coupled and give rise to a Fano resonance. We also show that the off-center core significantly increases the electric field enhancement at the shell surface compared to the concentric case, which can be exploited for surface-enhanced sensing. The multipole solutions are confirmed with finite-element calculations.

18.
Nanoscale ; 8(16): 8486-94, 2016 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-27064259

RESUMO

We describe the development of a highly tunable, physiologically stable, and ultra-bright Raman probe, named as TARGET (Tunable and Amplified Raman Gold Nanoprobes for Effective Tracking), for in vitro and in vivo surface-enhanced Raman scattering (SERS) applications. The TARGET structure consists of a gold core inside a larger gold shell with a tunable interstitial gap similar to a "nanorattle" structure. The combination of galvanic replacement and the seed mediated growth method was employed to load Raman reporter molecules and subsequently close the pores to prevent leaking and degradation of reporters under physiologically extreme conditions. Precise tuning of the core-shell gap width, core size, and shell thickness allows us to modulate the plasmonic effect and achieve a maximum electric-field (E-field) intensity. The interstitial gap of TARGET nanoprobes can be designed to exhibit a plasmon absorption band at 785 nm, which is in resonance with the dye absorption maximum and lies in the "tissue optical window", resulting in ultra-bright SERS signals for in vivo studies. The results of in vivo measurements of TARGETs in laboratory mice illustrated the usefulness of these nanoprobes for medical sensing and imaging.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Análise Espectral Raman/métodos , Animais , Carcinoma Pulmonar de Lewis/diagnóstico por imagem , Nanopartículas Metálicas/ultraestrutura , Camundongos , Camundongos Nus , Microscopia Eletrônica de Transmissão , Nanotecnologia , Ressonância de Plasmônio de Superfície/métodos
19.
Phys Chem Chem Phys ; 17(38): 24931-6, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26344505

RESUMO

We present a facile method to induce J-aggregate formation on gold nanospheres in colloidal solution using polyvinylsulfate. The nanoparticle J-aggregate complex results in an absorption spectrum with a split lineshape due to plasmon-exciton coupling, i.e. via the formation of upper and lower plexcitonic branches. The use of nanoparticles with different plasmon resonances alters the position of the upper plexcitonic band while the lower band remains at the same wavelength. This splitting is investigated theoretically, and shown analytically to arise from Fano resonance between the plasmon of the gold nanoparticles and exciton of the J-aggregates. A theoretical simulation of a J-aggregate coated and uncoated gold nanosphere produces an absorption spectrum that shows good agreement with the experimentally measured spectra.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Tamanho da Partícula , Polivinil/química , Ácidos Sulfônicos/química , Ressonância de Plasmônio de Superfície
20.
Anal Bioanal Chem ; 407(27): 8215-24, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26337748

RESUMO

Surface-enhanced Raman scattering (SERS)-active plasmonic nanomaterials have become a promising agent for molecular imaging and multiplex detection. Among the wide variety of plasmonics-active nanoparticles, gold nanostars offer unique plasmon properties that efficiently induce strong SERS signals. Furthermore, nanostars, with their small core size and multiple long thin branches, exhibit high absorption cross sections that are tunable in the near-infrared region of the tissue optical window, rendering them efficient for in vivo spectroscopic detection. This study investigated the use of SERS-encoded gold nanostars for in vivo detection. Ex vivo measurements were performed using human skin grafts to investigate the detection of SERS-encoded nanostars through tissue. We also integrated gold nanostars into a biocompatible scaffold to aid in performing in vivo spectroscopic analyses. In this study, for the first time, we demonstrate in vivo SERS detection of gold nanostars using small animal (rat) as well as large animal (pig) models. The results of this study establish the usefulness and potential of SERS-encoded gold nanostars for future use in long-term in vivo analyte sensing.


Assuntos
Ouro/análise , Nanoestruturas/análise , Pele/ultraestrutura , Análise Espectral Raman/métodos , Animais , Desenho de Equipamento , Humanos , Masculino , Modelos Animais , Poli-Hidroxietil Metacrilato/química , Ratos Sprague-Dawley , Transplante de Pele , Análise Espectral Raman/instrumentação , Suínos , Alicerces Teciduais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA