Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biol Pharm Bull ; 46(10): 1412-1420, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37779042

RESUMO

Pancreatic cancer cells have an inherent tolerance to withstand nutrition starvation, allowing them to survive in hypovascular tumor microenvironments that lack of sufficient nutrients and oxygen. Developing anti-cancer agents that target this tolerance to nutritional starvation is a promising anti-austerity strategy for eradicating pancreatic cancer cells in their microenvironment. In this study, we employed a chemical biology approach using the Ugi reaction to rapidly synthesize new anti-austerity agents and evaluate their structure-activity relationships. Out of seventeen Ugi adducts tested, Ugi adduct 11 exhibited the strongest anti-austerity activity, showing preferential cytotoxicity against PANC-1 pancreatic cancer cells with a PC50 value of 0.5 µM. Further biological investigation of Ugi adduct 11 revealed a dramatic alteration of cellular morphology, leading to PANC-1 cell death within 24 h under nutrient-deprived conditions. Furthermore, the R absolute configuration of 11 was found to significantly contribute to the preferential anti-austerity ability toward PANC-1, with a PC50 value of 0.2 µM. Mechanistically, Ugi adduct (R)-11 was found to inhibit the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway preferentially under nutrition starvation conditions. Consequently, Ugi-adduct (R)-11 could be a promising candidate for drug development targeting pancreatic cancer based on the anti-austerity strategy. Our study also demonstrated that the Ugi reaction-based chemical engineering of natural product extracts can be used as a rapid method for discovering novel anti-austerity agents for combating pancreatic cancer.


Assuntos
Antineoplásicos Fitogênicos , Antineoplásicos , Neoplasias Pancreáticas , Humanos , Antineoplásicos Fitogênicos/farmacologia , Linhagem Celular Tumoral , Fosfatidilinositol 3-Quinases , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias Pancreáticas/tratamento farmacológico , Ensaios de Seleção de Medicamentos Antitumorais , Microambiente Tumoral , Neoplasias Pancreáticas
2.
Biomacromolecules ; 24(11): 5265-5276, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37865930

RESUMO

Elastin-like peptides (ELPs) exhibit temperature-dependent reversible self-assembly. Repetitive sequences derived from elastin, such as Val-Pro-Gly-Val-Gly (VPGVG), are essential for the self-assembly of ELPs. Previously, we developed (FPGVG)5 (F5), in which the first valine residue in the VPGVG sequence was replaced with phenylalanine, which showed strong self-aggregation ability. This suggests that interactions through the aromatic amino acid residues of ELPs could play an important role in self-assembly. In this study, we investigated the thermoresponsive behavior of F5 analogs in the presence of aromatic compounds. Turbidimetry, spectroscopy, and fluorescence measurements demonstrated that aromatic compounds interacted with F5 analogs below the transition temperature and enhanced the self-assembly ability of ELPs by stabilizing amyloid-like structures. Furthermore, quantitative high-performance liquid chromatography analyses showed that the F5 analogs could adsorb and remove hydrophobic aromatic compounds from aqueous solutions during aggregate formation. These results suggested that the F5 analogs can be applicable as scavengers of aromatic compounds.


Assuntos
Elastina , Peptídeos , Elastina/química , Adsorção , Peptídeos/química , Fenilalanina , Temperatura
3.
Biochemistry ; 62(17): 2559-2570, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37540116

RESUMO

Synthetic elastin-like peptides (ELPs) that possess characteristic tropoelastin-derived hydrophobic repetitive sequences, such as (VPGVG)n, exhibit thermoresponsive reversible self-assembly. Although their thermoresponsive properties have been well-studied, the sequence-dependent and structural requirements for self-assembly remain ambiguous. In particular, it is still unclear whether the amino acid sequences derived from tropoelastin are necessary for self-assembly. In this study, 11 sequence-shuffled ELP analogues based on (FPGVG)5, which is a previously developed short ELP (sELP), were designed to elucidate the sequence-dependent and structural requirements for their self-assembly. Among them, eight shuffled peptides exhibited self-assembling properties, whereas the other three peptides were difficult to dissolve in water. Structural analyses revealed that the structural characteristics of the three insoluble peptides were different from those of their thermoresponsive analogues. Furthermore, the secondary structures of the peptide analogues possessing the self-assembly abilities were different from each other. These results suggest that the potential for self-assembly and water solubility of sELPs depend on the primary structure in each repeated unit. Moreover, several shuffled analogues exhibited more potent self-assembling properties than the original (FPGVG)5, indicating that shorter ELPs can be obtained using their novel motifs as repetitive units. We also observed that the presence of Pro-Gly sequence in the repeating units was advantageous in terms of peptide solubility. Although further analysis will be necessary to elucidate the molecular mechanism underlying the self-assembly of these sELPs, this study provides insights into the relationship between the amino acid sequence and the self-assembling ability of the peptides for developing new sELPs for various applications.


Assuntos
Elastina , Tropoelastina , Elastina/química , Tropoelastina/química , Peptídeos/química , Sequência de Aminoácidos , Sequências Repetitivas de Ácido Nucleico
4.
J Pept Sci ; 29(12): e3528, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37340996

RESUMO

Elastin-like peptides (ELPs) are synthetic peptides that mimic the characteristic hydrophobic amino acid repeat sequences of elastin and exhibit temperature-dependent reversible self-assembly properties. ELPs are expected to be used as temperature-responsive biomolecular materials across diverse industrial and research fields, and there is a requirement for a straightforward method to mass-produce them. Previously, we demonstrated that phenylalanine-containing ELP analogs, namely, (FPGVG)n , can undergo coacervation with short chains (n = 5). The Fmoc solid-phase peptide synthesis method is one strategy used to synthesize these short ELPs. However, owing to its low reaction efficiency, an efficient method for preparing ELPs is required. In this study, efficient preparation of ELPs was investigated using a liquid-phase synthesis method with a hydrophobic benzyl alcohol support (HBA-tag). Because HBA-tags are highly hydrophobic, they can be easily precipitated by the addition of poor solvents and recovered by filtration. This property allows the method to combine the advantages of the simplicity of solid-phase methods and the high reaction efficiency of liquid-phase methods. By utilizing liquid-phase fragment condensation with HBA-tags, short ELPs were successfully obtained in high yield and purity. Finally, the temperature-dependent response of the ELPs generated through fragment condensation was assessed using turbidity measurements, which revealed a reversible phase transition. Consequently, the ELPs exhibited a reversible phase transition, indicating successful synthesis of ELPs via fragment preparation with tags. These findings provide evidence of the potential for mass production of ELPs using this approach.


Assuntos
Elastina , Peptídeos , Elastina/química , Peptídeos/química , Temperatura , Transição de Fase
5.
Heliyon ; 9(1): e13003, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36704289

RESUMO

Halogenated flame retardants comprising bisphenol A (BPA) derivatives, such as tetrabromobisphenol A (TBBPA), have been studied their adverse effects on human health. However, despite the fact that these halogenated BPAs are easily degraded in the environment, the risks to living organisms due to these degraded products have mostly been overlooked. To evaluate the potential toxicity of degraded TBBPAs and related compounds, we examined the cytotoxicity of halogenated bisphenol A derivatives possessing one to four halogen atoms in vitro. The results indicated that the degraded TBBPA derivatives exhibited strong cytotoxicity against HeLa cells than TBBPA. Interestingly, the di-halogenated BPA derivatives possessing two halogen atoms exhibited the strongest cytotoxicity among tested compounds. In addition, a lactate dehydrogenase release assay, fluorescence spectroscopy and flow cytometry results indicated that dibromo-BPA and diiodo-BPA induced both apoptotic and necrotic cell death by damaging the cell membranes of HeLa cells. Moreover, Escherichia coli growth was inhibited in the presence of dehalogenated TBBPA and related compounds. These findings suggest that halogenated BPA derivatives that leak from various flame-retardant-containing products require strict monitoring, as not only TBBPA but also its degraded products in environment can exert adverse effects to human health.

6.
J Pept Sci ; 29(2): e3449, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36038531

RESUMO

Elastin-like peptides (ELPs) exhibit a reversible phase transition, known as coacervation, triggered by temperature changes. This property makes them useful as stimuli-responsive molecular materials for various applications. Among ELPs, short peptide chain lengths have some advantages over long peptide chain lengths because short ELPs can be easily obtained by chemical synthesis, allowing the use of various amino acids, including D-type and unnatural amino acids, at any position in the sequence. Moreover, the incorporated amino acids readily affect the temperature-responsive behavior of ELPs. However, to be utilized in various applications, it is necessary to develop short ELPs and to investigate their temperature-responsive properties. To obtain further insights into the temperature-responsive behavior of the short ELPs, we investigated branched short ELP analogs composed of (FPGVG)n chains (n = 1 or 2, abbreviated as F1 and F2, respectively). We synthesized multimers composed of four F1 chains or two to four F2 chains using ethylenediaminetetraacetic acid (EDTA) as a central component of multimerization. Our results show that the multimers obtained exhibited coacervation in aqueous solutions whereas linear F1 or F2 did not. Furthermore, the structural features of the obtained multimers were the same as those of linear (FPGVG)4 . In this study, we demonstrated that molecules capable of coacervation can be obtained by multimerization of F1 or F2. The temperature-responsive molecules obtained using short ELPs make it possible to use them as easy-to-synthesize peptide tags to confer temperature responsiveness to various molecules, which will aid the development of temperature-responsive biomaterials with a wide variety of functions.


Assuntos
Elastina , Peptídeos , Ácido Edético , Elastina/química , Temperatura , Peptídeos/química , Aminoácidos
7.
Sci Rep ; 12(1): 19414, 2022 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-36371418

RESUMO

Functional peptides, which are composed of proteinogenic natural amino acids, are expected to be used as biomaterials with minimal environmental impact. Synthesizing a functional peptide with a shorter amino acid sequence while retaining its function is a easy and economical strategy. Furthermore, shortening functional peptides helps to elucidate the mechanism of their functional core region. Truncated elastin-like peptides (ELPs) are peptides consisting of repetitive sequences, derived from the elastic protein tropoelastin, that show the thermosensitive formation of coacervates. In this study, to obtain shortened ELP analogues, we synthesized several (Phe-Pro-Gly-Val-Gly)n (FPGVG)n analogues with one or two amino acid residues deleted from each repeat sequence, such as the peptide analogues consisting of FPGV and/or FPG sequences. Among the novel truncated ELP analogues, the 16-mer (FPGV)4 exhibited a stronger coacervation ability than the 25-mer (FPGVG)5. These results indicated that the coacervation ability of truncated ELPs was affected by the amino acid sequence and not by the peptide chain length. Based on this finding, we prepared Cd2+-binding sequence-conjugated ELP analogue, AADAAC-(FPGV)4, and found that it could capture Cd2+. These results indicated that the 16-mer (FPGV)4 only composed of proteinogenic amino acids could be a new biomaterial with low environmental impact.


Assuntos
Cádmio , Elastina , Elastina/genética , Elastina/química , Temperatura , Peptídeos/genética , Peptídeos/química , Aminoácidos
8.
Sci Rep ; 12(1): 15568, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36114212

RESUMO

Plant extracts are rich in a wide variety of molecules with diverse biological activities. Chemical engineering of plant extracts has provided a straightforward and simultaneous synthetic route for artificial molecules derived from plant products. This study achieved the synthesis of 13 natural product-like molecules by the Ugi multicomponent reaction using plant extracts as substrates. In particular, the engineering of a mixture of plant extracts demonstrated a unique synthetic route to a series of natural product hybrids, whereby otherwise unencountered naturally occurring molecules of different origins were chemically hybridized in complex media. Even though these reactions took place in complex media containing plant extracts, the well-designed process achieved a good conversion efficiency (~ 60%), chemoselectivity, and reproducibility. Additionally, some of the Ugi adducts exhibited promising inhibitory activity toward protease.


Assuntos
Produtos Biológicos , Peptídeo Hidrolases , Extratos Vegetais , Reprodutibilidade dos Testes
9.
Biopolymers ; 113(10): e23521, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35830538

RESUMO

Elastin-like peptides (ELPs) are thermoresponsive biopolymers inspired by the characteristic repetitive sequences of natural elastin. As ELPs exhibit temperature-dependent reversible self-assembly, they are expected to be biocompatible thermoresponsive materials for drug delivery carriers. One of the most widely studied ELPs in this field is the repetitive pentapeptide, (VPGXG)n . We previously reported that phenylalanine-containing ELP (Fn) analogs, in which the former Val residue of the repetitive sequence (VPGVG)n is replaced by Phe, show coacervation with a short chain length (n = 5). Owing to their short sequences, Fn analogs are easily modified in amino acid sequences via simple chemical synthesis, and are useful for investigating the relationship between peptide sequences and temperature responsiveness. In this study, we developed Fn analogs by replacing Phe residue(s) with other amino acids or introducing another amino acid at the N-terminus. The temperature responsiveness of the Fn analogs changed drastically with the substitution of a single Phe residue, suggesting that aromatic amino acids play an important role in their self-assembly. In addition, the self-assembling ability of Fn was enhanced by increasing the bulkiness of the N-terminal amino acids. Therefore, the N-terminal residue was considered to be important for hydrophobicity-induced intermolecular interactions between the peptides during coacervation.


Assuntos
Elastina , Peptídeos , Elastina/química , Peptídeos/química , Aminoácidos Aromáticos , Fenilalanina , Aminoácidos
10.
Sci Rep ; 12(1): 1861, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35115613

RESUMO

The development of simple and safe methods for recovering environmental pollutants, such as heavy metals, is needed for sustainable environmental management. Short elastin-like peptide (ELP) analogues conjugated with metal chelating agents are considered to be useful as metal sequestering agents as they are readily produced, environment friendly, and the metal binding domain can be selected based on any target metal of interest. Due to the temperature dependent self-assembly of ELP, the peptide-based sequestering agents can be transformed from the solution state into the particles that chelate metal ions, which can then be collected as precipitates. In this study, we developed a peptide-based sequestering agent, AADAAC-(FPGVG)4, by introducing the metal-binding sequence AADAAC on the N-terminus of a short ELP, (FPGVG)4. In turbidity measurements, AADAAC-(FPGVG)4 revealed strong self-assembling ability in the presence of metal ions such as Cd2+ and Zn2+. The results from colorimetric analysis indicated that AADAAC-(FPGVG)4 could capture Cd2+ and Zn2+. Furthermore, AADAAC-(FPGVG)4 that bound to metal ions could be readily recycled by treatment with acidic solution without compromising its metal binding affinity. The present study indicates that the fusion of the metal-binding sequence and ELP is a useful and powerful strategy to develop cost-effective heavy metal scavenging agents with low environmental impacts.

11.
Bioorg Med Chem ; 51: 116498, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34794000

RESUMO

Heptapeptide SFLLRNP is a receptor-tethered ligand of protease-activated receptor 1 (PAR-1), and its Phe at position 2 is essential for the aggregation of human platelets. To validate the structural elements of the Phe-phenyl group in receptor activation, we have synthesized a complete set of S/Phe/LLRNP peptides comprising different series of fluorophenylalanine isomers (Fn)Phe, where n = 1, 2, 3, and 5. Phe-2-phenyl was strongly suggested to be involved in the edge-to-face CH/π interaction with the receptor aromatic group. In the present study, to prove this receptor interaction definitively, we synthesized another series of peptide analogs containing (F4)Phe-isomers, with the phenyl group of each isomer possessing only one hydrogen atom at the ortho, meta, or para position. When the peptides were assayed for their platelet aggregation activity, S/(2,3,4,6-F4)Phe/LLRNP and S/(2,3,4,5-F4)Phe/LLRNP exhibited noticeable activity (34% and 6% intensities of the native peptide, respectively), whereas S/(2,3,5,6-F4)Phe/LLRNP was completely inactive. The results indicated that, at the ortho and meta positions but not at the para position, benzene-hydrogen atoms are required for the CH/π interaction to activate the receptor. The results provided a decisive evidence of the molecular recognition property of Phe, the phenyl benzene-hydrogen atom of which participates directly in the interaction with the receptor aromatic π plane.


Assuntos
Fragmentos de Peptídeos/farmacologia , Fenilalanina/farmacologia , Receptor PAR-1/antagonistas & inibidores , Relação Dose-Resposta a Droga , Voluntários Saudáveis , Humanos , Ligantes , Estrutura Molecular , Fragmentos de Peptídeos/química , Fenilalanina/química , Agregação Plaquetária/efeitos dos fármacos , Receptor PAR-1/metabolismo , Relação Estrutura-Atividade
12.
J Biol Chem ; 297(5): 101173, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34499926

RESUMO

Bisphenol A and its derivatives are recognized as endocrine disruptors based on their complex effects on estrogen receptor (ER) signaling. While the effects of bisphenol derivatives on ERα have been thoroughly evaluated, how these chemicals affect ERß signaling is less well understood. Herein, we sought to identify novel ERß ligands using a radioligand competitive binding assay to screen a chemical library of bisphenol derivatives. Many of the compounds identified showed intriguing dual activities as both ERα agonists and ERß antagonists. Docking simulations of these compounds and ERß suggested that they bound not only to the canonical binding site of ERß but also to the coactivator binding site located on the surface of the receptor, suggesting that they act as coactivator-binding inhibitors (CBIs). Receptor-ligand binding experiments using WT and mutated ERß support the presence of a second ligand-interaction position at the coactivator-binding site in ERß, and direct binding experiments of ERß and a coactivator peptide confirmed that these compounds act as CBIs. Our study is the first to propose that bisphenol derivatives act as CBIs, presenting critical insight for the future development of ER signaling-based drugs and their potential to function as endocrine disruptors.


Assuntos
Compostos Benzidrílicos , Receptor beta de Estrogênio , Fenóis , Transdução de Sinais/efeitos dos fármacos , Compostos Benzidrílicos/química , Compostos Benzidrílicos/farmacologia , Receptor beta de Estrogênio/química , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Células HeLa , Humanos , Mutação , Fenóis/química , Fenóis/farmacologia , Ligação Proteica , Transdução de Sinais/genética
13.
ACS Omega ; 6(8): 5705-5716, 2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33681610

RESUMO

Elastin comprises hydrophobic repetitive sequences, such as Val-Pro-Gly-Val-Gly, which are thought to be important for the temperature-dependent reversible self-association (coacervation). Elastin and elastin-like peptides (ELPs), owing to their characteristics, are expected to be applied as base materials for the development of new molecular tools, such as drug-delivery system carrier and metal-scavenging agents. Recently, several studies have been reported on the dendritic or branching ELP analogues. Although the topological difference of the branched ELPs compared to their linear counterparts may lead to useful properties in biomaterials, the available information regarding the effect of branching on molecular architecture and thermoresponsive behavior of ELPs is scarce. To obtain further insight into the thermoresponsive behavior of branched ELPs, novel ELPs, such as nitrilotriacetic acid (NTA)-(FPGVG) n conjugates, that is, (NTA)-Fn analogues possessing 1-3 (FPGVG) n (n = 3, 5) molecule(s), were synthesized and investigated for their coacervation ability. Turbidity measurement of the synthesized peptide analogues revealed that (NTA)-Fn analogues showed strong coacervation ability with various strengths. The transition temperature of NTA-Fn analogues exponentially decreased with increasing number of residues. In the circular dichroism measurements, trimerization did not alter the secondary structure of each peptide chain of the NTA-Fn analogue. In addition, it was also revealed that the NTA-Fn analogue possesses one peptide chain that could be utilized as metal-scavenging agents. The study findings indicated that multimerization of short ELPs via NTA is a useful and powerful strategy to obtain thermoresponsive molecules.

14.
PLoS One ; 16(2): e0246583, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33561155

RESUMO

We reported that bisphenol AF (BPAF) works as an agonist for estrogen receptor (ER) ERα but as an antagonist for ERß. Similar results were observed for bisphenol E analogs (BPE-X) such as BPE-F, BPE-Cl, and BPE-Br, each consisting of a series of a tri-halogenated methyl group CX3 in the central alkyl moiety. It was demonstrated that the electrostatic halogen bond based on the dispersion force of halogen atoms is a major driving force in the activities of bifunctional ERα-agonist and ERß-antagonist. Since the chlorine atoms present in bisphenol C (BPC) exist in a π-π conjugated system due to the presence of an adjacent C = C double bond, we intended to prove that BPC is also a bifunctional ERα-agonist and ERß-antagonist exhibiting greatly enhanced agonist/antagonist activities. BPC was evaluated for its ability to activate ERα and ERß in the luciferase reporter gene assay using HeLa cells. With high receptor-binding ability to both ERs, BPC was found to be fully active for ERα but inactive for ERß. BPC's definite antagonist activity in ERß was revealed by its inhibitory activity against 17ß-estradiol. Thus, BPC is a bifunctional ERα-agonist and ERß-antagonist. These agonist/antagonist activities were discovered to be extremely high among series of halogen-containing bisphenol compounds. This comparative structure-activity study revealed that the ascending order of ERα-agonist and ERß-antagonist activities was BPE-F ≪ BPE-Cl ≲ BPAF < BPE-Br ≪ BPC. The highly intensified receptor interaction of BPC is attributable to the presence of an n-π-π-n conjugation system mediated through the >C = CCl2 double bond.


Assuntos
Compostos Benzidrílicos/farmacologia , Receptor alfa de Estrogênio/agonistas , Receptor beta de Estrogênio/antagonistas & inibidores , Halogênios/metabolismo , Fenóis/farmacologia , Compostos Benzidrílicos/química , Ligação Competitiva/efeitos dos fármacos , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Genes Reporter , Células HeLa , Humanos , Ligantes , Luciferases/metabolismo , Fenóis/química , Ativação Transcricional/efeitos dos fármacos , Ativação Transcricional/genética
15.
Biochemistry ; 59(40): 3879-3888, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-32940996

RESUMO

A hyaluronic acid-degrading enzyme (hyaluronidase; HAase) is involved in tumor growth and inflammation, and consequently, HAase inhibitors have received recent attention as potential pharmaceuticals. Previous studies have discovered a wide range of inhibitors; however, unfortunately, most of them are dissimilar to the original ligand hyaluronic acid, and their mode of inhibition remains ambiguous or seems promiscuous. This situation presents an urgent need for readily available and highly reliable assay systems identifying the promiscuous inhibitory properties of HAase inhibitors. We have previously proposed a unique method to identify promiscuous nonspecific binding inhibitors of HAase by using the DMSO-perturbing effect. Here, to obtain mechanistic insights into the DMSO-perturbing assay, we studied the addition effect of 11 water-compatible chemicals on HAase inhibitory assay. Intriguingly, the perturbing property was found to be highly specific to DMSO. Furthermore, kinetic analyses described characteristic description of the perturbing property of DMSO: DMSO displayed entropy-driven interactions with HAase, whereas nonperturbing agents such as ethanol and urea exhibited enthalpy-driven interactions. The enthalpy-driven tight interactions of ethanol and urea with HAase would lead to the irreversible denaturation of the enzymes, while the entropy-driven weak interactions caused structural and catalytic perturbation, generating nonproductive but nondenatured states of enzymes, that are key species of the perturbation assay. With these mechanistic understandings in hand, the present assay will enable rapid and reliable identification of HAase inhibitors with certain pharmaceutical potential.


Assuntos
Dimetil Sulfóxido/farmacologia , Ensaios Enzimáticos/métodos , Inibidores Enzimáticos/farmacologia , Hialuronoglucosaminidase/antagonistas & inibidores , Animais , Bovinos , Dimetil Sulfóxido/química , Inibidores Enzimáticos/química , Hialuronoglucosaminidase/metabolismo , Cinética , Termodinâmica
16.
Chem Res Toxicol ; 33(4): 889-902, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32105061

RESUMO

Halogenation of organic compounds is one the most important transformations in chemical synthesis and is used for the production of various industrial products. A variety of halogenated bisphenol analogs have recently been developed and are used as alternatives to bisphenol A (BPA), which is a raw material of polycarbonate that has adverse effects in animals. However, limited information is available on the potential toxicity of the halogenated BPA analogs. In the present study, to assess the latent toxicity of halogenated BPA analogs, we evaluated the binding and transcriptional activities of halogenated BPA analogs to the estrogen-related receptor γ (ERRγ), a nuclear receptor that contributes to the growth of nerves and sexual glands. Fluorinated BPA analogs demonstrated strong ERRγ binding potency, and inverse antagonistic activity, similar to BPA. X-ray crystallography and fragment molecular orbital (FMO) calculation revealed that a fluorine-substituted BPA analog could interact with several amino acid residues of ERRγ-LBD, strengthening the binding affinity of the analogs. The ERRγ binding affinity and transcriptional activity of the halogenated BPAs decreased with the increase in the size and number of halogen atom(s). The IC50 values, determined by the competitive binding assay, correlated well with the binding energy obtained from the docking calculation, suggesting that the docking calculation could correctly estimate the ERRγ binding potency of the BPA analogs. These results confirmed that ERRγ has a ligand binding pocket that fits very well to BPA. Furthermore, this study showed that the binding affinity of the BPA analogs can be predicted by the docking calculation, indicating the importance of the calculation method in the risk assessment of halogenated compounds.


Assuntos
Compostos Benzidrílicos/efeitos adversos , Fenóis/efeitos adversos , Receptores de Estrogênio/antagonistas & inibidores , Compostos Benzidrílicos/química , Sítios de Ligação/efeitos dos fármacos , Cristalografia por Raios X , Teoria da Densidade Funcional , Halogenação , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Fenóis/química , Receptores de Estrogênio/metabolismo
17.
Bioorg Med Chem Lett ; 30(2): 126815, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31744675

RESUMO

Aldose reductase (AR) inhibitors are used clinically to treat long-term diabetic complications. Previous studies reported a series of AR inhibitory candidates, but unfortunately the mode of inhibition was poorly described due mainly to the lack of readily available methods for evaluating the specificity. The present study examined the AR inhibitory effects of novel synthetic hydantoins and their structural relatives, some of which were obtained from chemically engineered extracts of natural plants, and discovered several novel AR inhibitors with moderate inhibitory activity. The identified inhibitors were then subjected to a two-step mechanistic characterization using a detergent-addition assay and our novel dimethyl sulfoxide (DMSO)-perturbation assay. The detergent-addition assay revealed aggregation-based inhibitors, and the subsequent DMSO-perturbation assay identified nonspecific binding inhibitors. Thus, the present study demonstrates the usefulness of the DMSO-perturbation screen for identifying nonspecific binding characteristics of AR inhibitors.


Assuntos
Aldeído Redutase/antagonistas & inibidores , Dimetil Sulfóxido/química , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
18.
Bioorg Med Chem ; 28(3): 115274, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31879182

RESUMO

17ß-Estradiol (E2) is a natural steroid ligand for the structurally and physiologically independent estrogen receptors (ERs) ERα and ERß. We recently observed that CF3-containing bisphenol AF (BPAF) works as an agonist for ERα but as an antagonist for ERß. Similar results were also observed for the CCl3-containing bisphenol designated as HPTE. Both BPAF and HPTE are comprised of a tri-halogenated methyl group in the central alkyl moiety of their bisphenol structures, which strongly suggests that halogens contribute directly to the agonist/antagonist dual biological functions. We conducted this study to investigate the structure-activity relationships by assessing together newly synthesized CF3- and CBr3-containing bisphenol E analogs (BPE-X). We first tested bisphenols for their receptor binding ability and then for their transcriptional activities. Halogen-containing bisphenols were found to be fully active for ERα, but almost completely inactive for ERß. When we examined these bisphenols for their inhibitory activities for E2 in ERß, we observed that they worked as distinct antagonists. The ascending order of agonist/antagonist dual biological functions was BPE-F < BPE-Cl (HPTE) ≤ BPAF < BPE-Br, demonstrating that the electrostatic halogen bonding effect is a major driving force of the bifunctional ERα agonist and ERß antagonist activities of BPAF.


Assuntos
Compostos Benzidrílicos/farmacologia , Antagonistas do Receptor de Estrogênio/farmacologia , Receptor alfa de Estrogênio/agonistas , Receptor beta de Estrogênio/antagonistas & inibidores , Estrogênios/farmacologia , Fenóis/farmacologia , Compostos Benzidrílicos/síntese química , Compostos Benzidrílicos/química , Relação Dose-Resposta a Droga , Antagonistas do Receptor de Estrogênio/síntese química , Antagonistas do Receptor de Estrogênio/química , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Estrogênios/síntese química , Estrogênios/química , Células HeLa , Humanos , Estrutura Molecular , Fenóis/síntese química , Fenóis/química , Relação Estrutura-Atividade
19.
Toxicol Appl Pharmacol ; 377: 114610, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31195007

RESUMO

An endocrine-disrupting chemical Bisphenol A (BPA) binds specifically to a nuclear receptor (NR) named ERRγ. Although the importance of receptor-binding evaluation for human NRs is often stressed, the binding characteristics of so-called next-generation (NextGen) bisphenol compounds are still poorly understood. The ultimate objective of this investigation was to evaluate BPA and its NextGen analogs for their abilities to bind to 21 human NRs, the greatest members of NRs for which tritium-labeled specific ligands were available. After establishing the detailed assay conditions for each NR, the receptor binding affinities of total 11 bisphenols were evaluated in competitive binding assays. The results clearly revealed that BPA and the NextGen bisphenols of BPAF, BPAP, BPB, BPC, BPE, and BPZ were highly potent against one or more of NRs such as CAR, ERα, ERß, ERRγ, and GR, with IC50 values of 3.3-73 nM. These bisphenols were suggested strongly to be disruptive to these NRs. BPM and BPP also appeared to be disruptive, but less potently. BPF exhibited only weak effects and only against estrogen-related NRs. Surprisingly, most doubtful bisphenol BPS was supposed not to be disruptive. The NRs to which BPA and NextGen bisphenols did not bind were RARα, RARß, RARγ, and VDR. PPARγ, RORα, RORß, RORγ, RXRα, RXRß, and RXRγ, exhibited very weak interaction with these bisphenols. The ten remaining NRs, namely, ERRγ, ERß, ERα, CAR, GR, PXR, PR, AR, LXRß, and LXRα, showed distinctly strong binding to some bisphenols in this order, being likely to have consequential endocrine-disruption effects.


Assuntos
Compostos Benzidrílicos/metabolismo , Disruptores Endócrinos/metabolismo , Fenóis/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores de Estrogênio/metabolismo , Compostos Benzidrílicos/farmacologia , Compostos Benzidrílicos/toxicidade , Ligação Competitiva , Estrogênios/metabolismo , Humanos , Modelos Biológicos , Fenóis/farmacologia , Fenóis/toxicidade , Ensaio Radioligante , Receptores Citoplasmáticos e Nucleares/efeitos dos fármacos , Receptores de Estrogênio/efeitos dos fármacos , Medição de Risco
20.
ACS Med Chem Lett ; 10(6): 923-928, 2019 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-31223449

RESUMO

In search for enzyme inhibitors, we often encounter "promiscuous" enzyme inhibitors exhibiting nonspecific binding property toward enzyme active site. Therefore, inhibitory candidates should be mechanistically characterized as early as possible in discovery processes. However, there remains a lack of highly reliable and readily available methodology to evaluate specificity of initial hits inhibitors. The present study developed and established a novel DMSO-perturbing assay to identify promiscuous enzyme inhibitors. The assay successfully identified nonspecific binding inhibitors with a broad scope, typically by the attenuation of inhibitory activity by the influence of DMSO-addition. This attenuation would be attributed to the nonspecific binding property of inhibitors toward both productive and nonproductive (nondenatured) states of enzymes in perturbation solution. This working hypothesis was supported by spectroscopic analyses of enzyme conformations and analyses of solvent effects on perturbation. Overall, these results provided a novel concept of the DMSO-perturbing assay.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA