Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Synchrotron Radiat ; 30(Pt 6): 1114-1126, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37738030

RESUMO

X-ray absorption and emission spectroscopies nowadays are advanced characterization methods for fundamental and applied actinide research. One of the advantages of these methods is to reveal slight changes in the structural and electronic properties of radionuclides. The experiments are generally carried out at synchrotrons. However, considerable progress has been made to construct laboratory-based X-ray spectrometers for X-ray absorption and emission spectroscopies. Laboratory spectrometers are reliable, effective and accessible alternatives to synchrotrons, especially for actinide research, which allow dispensing with high costs of the radioactive sample transport and synchrotron time. Moreover, data from laboratory spectrometers, obtained within a reasonable time, are comparable with synchrotron results. Thereby, laboratory spectrometers can complement synchrotrons or can be used for preliminary experiments to find perspective samples for synchrotron experiments with better resolution. Here, the construction and implementation of an X-ray spectrometer (LomonosovXAS) in Johann-geometry at a radiochemistry laboratory is reported. Examples are given of the application of LomonosovXAS to actinide systems relevant to the chemistry of f-elements, the physical chemistry of nuclear power engineering and the long-term disposal of spent nuclear fuel.

2.
ACS Appl Mater Interfaces ; 15(25): 30272-30280, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37329310

RESUMO

NASICON-type NaNbV(PO4)3 electrode material synthesized by the Pechini sol-gel technique undergoes a reversible three-electron reaction in a Na-ion cell which corresponds to the Nb5+/Nb4+, Nb4+/Nb3+, and V3+/V2+ redox processes and provides a reversible capacity of 180 mAh·g-1. The sodium insertion/extraction takes place in a narrow potential range at an average potential of 1.55 V versus Na+/Na. Structural characterization by operando and ex situ X-ray diffraction disclosed the reversible evolution of the NaNbV(PO4)3 polyhedron framework during cycling, while XANES measurements in the operando regime confirmed the multielectron transfer upon sodium intercalation/extraction into NaNbV(PO4)3. This electrode material demonstrates extended cycling stability and excellent rate capability maintaining the capacity value of 144 mAh·g-1 at 10 C current rates. It can be regarded as a superior anode material suitable for application in high-power and long-life sodium-ion batteries.

3.
Environ Sci Technol ; 57(13): 5243-5251, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36940242

RESUMO

The sorption of Ce(III) on three abundant environmental minerals (goethite, anatase, and birnessite) was investigated. Batch sorption experiments using a radioactive 139Ce tracer were performed to investigate the key features of the sorption process. Differences in sorption kinetics and changes in oxidation states were found in the case of the sorption of Ce(III) on birnessite compared to that on other minerals. Speciation of cerium onto all of the studied minerals was investigated using spectral and microscopic methods: high-resolution transmission electron microscopy (HRTEM), electron energy loss spectroscopy (EELS), and X-ray absorption spectroscopy (XAS) in conjunction with theoretical calculations. It was found that during the sorption process onto birnessite, Ce(III) was oxidized to Ce(IV), while the Ce(III) on goethite and anatase surfaces remained unchanged. Oxidation of Ce(III) by sorption on birnessite was also accompanied by the formation of CeO2 nanoparticles on the mineral surface, which depended on the initial cerium concentration and pH value.


Assuntos
Cério , Minerais , Minerais/química , Adsorção
4.
Inorg Chem ; 62(1): 487-496, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36542782

RESUMO

Phenanthroline diamides (L) demonstrated a unique ability to extract uranium from nitric acid solutions into a polar organic solvent forming complexes of 1:2 stoichiometry as tight ion pairs {[UO2LNO3]+[UO2(NO3)3]-} by a novel extraction mechanism, which is a combination of two already well-known mechanisms: solvation and ion-pair anion exchange. A UV-vis study was used to confirm the formation of such complexes directly in the organic phase. Moreover, chemical synthesis and single crystal growth were performed to confirm unambiguously the structure of the complexes in the solid state.

5.
Chem Sci ; 13(27): 8161-8170, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35919425

RESUMO

The demand for fast-charging metal-ion batteries underlines the importance of anodes that work at high currents with no risk of dendrite formation. NiBTA, a one-dimensional Ni-based polymer derived from benzenetetramine (BTA), is a recently proposed promising material for safe fast-charging batteries. However, its charge-discharge mechanisms remained unclear and controversial. Here we solve the controversies by providing the first rigorous study using a combination of advanced theoretical and experimental techniques, including operando and ex situ X-ray diffraction, operando Raman spectroscopy and ex situ X-ray absorption near-edge spectroscopy (XANES). In safe potential ranges (0.5-2.0 V vs. M+/M, M = Li, Na or K), NiBTA offers high capacities, fast charge-discharge kinetics, high cycling stability and compatibility with various cations (Li+, Na+, K+). In the Na- and K-based cells, fast bulk faradaic processes are manifested for partially reduced states. Atomistic simulations explain the fast kinetics by facile rotations and displacements of the macromolecules in the crystal, opening channels for fast ion insertion. The material undergoes distinct crystal structure rearrangements in the Li-, Na- and K-based systems, which explains different electrochemical features. At the molecular level, the charge storage mechanism involves reversible two-electron reduction of the repeating units accompanied by a change of the absorption bandgap. The reversible reduction involves filling of the orbitals localized at the ligand moieties. No reduction of NiBTA beyond two electrons per repeating unit is observed at potentials down to 0 V vs. M+/M.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA