Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 3898, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33594128

RESUMO

Glacier ice is an extreme environment in which most animals cannot survive. Here we report the colonization of high elevation, climate-threatened glaciers along New Zealand's southwestern coast by species of Arthropoda, Nematoda, Platyhelminthes, Rotifera and Tardigrada. Based on DNA barcoding and haplotype-inferred evidence for deep genetic variability, at least 12 undescribed species are reported, some of which have persisted in this niche habitat throughout the Pleistocene. These findings identify not only an atypical biodiversity hotspot but also highlight the adaptive plasticity of microinvertebrate Animalia.

2.
Mol Biol Evol ; 31(1): 177-83, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24136916

RESUMO

The phylogenetic branching order of the green algal groups that gave rise to land plants remains uncertain despite its fundamental importance to understanding plant evolution. Previous studies have demonstrated that land plants evolved from streptophyte algae, but different lineages of streptophytes have been suggested to be the sister group of land plants. To better understand the evolutionary history of land plants and to determine the potential effects of "long-branch attraction" in phylogenetic reconstruction, we analyzed a chloroplast genome data set including three new chloroplast genomes from streptophyte algae: Coleochaetae orbicularis (Coleochaetales), Nitella hookeri (Charales), and Spirogyra communis (Zygnematales). We further applied a site pattern sorting method together with site- and time-heterogeneous models to investigate the branching order among streptophytes and land plants. Our chloroplast phylogenomic analyses support previous hypotheses based on nuclear data in placing Zygnematales alone, or a clade consisting of Coleochaetales plus Zygnematales, as the closest living relatives of land plants.


Assuntos
Clorófitas/genética , Embriófitas/genética , Genoma de Cloroplastos , Evolução Biológica , Clorófitas/classificação , DNA de Algas/genética , DNA de Cloroplastos/genética , Embriófitas/classificação , Filogenia , Análise de Sequência de DNA
3.
J Eukaryot Microbiol ; 56(4): 367-72, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19602082

RESUMO

The systematics of the green algal class Ulvophyceae have been difficult to resolve with ultrastructural and molecular phylogenetic analyses. Therefore, we investigated relationships among ulvophycean orders by determining the distribution of two discrete genetic characters previously identified only in the order Dasycladales. First, Acetabularia acetabulum uses the core translation GTPase Elongation Factor 1alpha (EF-1alpha) while most Chlorophyta instead possess the related GTPase Elongation Factor-Like (EFL). Second, the nuclear genomes of dasycladaleans A. acetabulum and Batophora oerstedii use a rare non-canonical genetic code in which the canonical termination codons TAA and TAG instead encode glutamine. Representatives of Ulvales and Ulotrichales were found to encode EFL, while Caulerpales, Dasycladales, Siphonocladales, and Ignatius tetrasporus were found to encode EF-1alpha, in congruence with the two major lineages previously proposed for the Ulvophyceae. The EF-1alpha of I. tetrasporus supports its relationship with Caulerpales/Dasycladales/Siphonocladales, in agreement with ultrastructural evidence, but contrary to certain small subunit rRNA analyses that place it with Ulvales/Ulotrichales. The same non-canonical genetic code previously described in A. acetabulum was observed in EF-1alpha sequences from Parvocaulis pusillus (Dasycladales), Chaetomorpha coliformis, and Cladophora cf. crinalis (Siphonocladales), whereas Caulerpales use the universal code. This supports a sister relationship between Siphonocladales and Dasycladales and further refines our understanding of ulvophycean phylogeny.


Assuntos
Clorófitas , Código Genético , Fator 1 de Elongação de Peptídeos/biossíntese , Filogenia , Clorófitas/classificação , Clorófitas/genética , Clorófitas/metabolismo , Evolução Molecular , Regulação da Expressão Gênica , Fator 1 de Elongação de Peptídeos/genética , RNA de Algas/análise , RNA de Algas/biossíntese , RNA de Algas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência , Análise de Sequência , Especificidade da Espécie
4.
J Phycol ; 44(4): 1001-12, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27041619

RESUMO

The quadriflagellate snow alga Chlainomonas Christen, distributed in New Zealand and North America, has several unusual structural attributes. A process assumed to be cytokinesis involves extrusion of protoplasm from the parent through a narrow canal, C. kolii (J. T. Hardy et Curl) Hoham produces a net-like outer envelope rather than a cell wall, and the flagellar basal apparatus of Chlainomonas consists of two semi-independent pairs of basal bodies. Structural connections between basal body pairs appear minimal, but a connecting system different from that observed in other genera exists within each pair. Phylogenetic analysis using rbcL sequences places Chlainomonas in the Chloromonas clade, other known members of which are all biflagellate. Chlainomonas is split into two robust lineages, with New Zealand collections sharing an origin with northern North American collections. Although the quadriflagellate condition is regarded as ancestral in the Chlorophyceae, we speculate-based on ultrastructural and molecular data presented here-that Chlainomonas represents a derived form that has arisen from fusion of two ancestral biflagellate cells. Other explanations (for example, that Chlainomonas represents a diploid form of a biflagellate species) are remotely possible but are presently at odds with extensive observations of field material. Improvements in techniques for experimental manipulation of these sensitive cryophiles will be required to fully characterize their structure and progress our understanding of their biology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA