Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 3525, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35725842

RESUMO

Heterochromatin maintains genome integrity and function, and is organised into distinct nuclear domains. Some of these domains are proposed to form by phase separation through the accumulation of HP1ɑ. Mouse heterochromatin contains noncoding major satellite repeats (MSR), which are highly transcribed in mouse embryonic stem cells (ESCs). Here, we report that MSR transcripts can drive the formation of HP1ɑ droplets in vitro, and modulate heterochromatin into dynamic condensates in ESCs, contributing to the formation of large nuclear domains that are characteristic of pluripotent cells. Depleting MSR transcripts causes heterochromatin to transition into a more compact and static state. Unexpectedly, changing heterochromatin's biophysical properties has severe consequences for ESCs, including chromosome instability and mitotic defects. These findings uncover an essential role for MSR transcripts in modulating the organisation and properties of heterochromatin to preserve genome stability. They also provide insights into the processes that could regulate phase separation and the functional consequences of disrupting the properties of heterochromatin condensates.


Assuntos
Heterocromatina , Células-Tronco Embrionárias Murinas , Animais , Instabilidade Cromossômica/genética , Células-Tronco Embrionárias , Heterocromatina/genética , Histonas/genética , Camundongos
2.
Front Cell Dev Biol ; 9: 703466, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34307383

RESUMO

Inside the nucleus, chromatin is functionally organized and maintained as a complex three-dimensional network of structures with different accessibility such as compartments, lamina associated domains, and membraneless bodies. Chromatin is epigenetically and transcriptionally regulated by an intricate and dynamic interplay of molecular processes to ensure genome stability. Phase separation, a process that involves the spontaneous organization of a solution into separate phases, has been proposed as a mechanism for the timely coordination of several cellular processes, including replication, transcription and DNA repair. Telomeres, the repetitive structures at the end of chromosomes, are epigenetically maintained in a repressed heterochromatic state that prevents their recognition as double-strand breaks (DSB), avoiding DNA damage repair and ensuring cell proliferation. In pluripotent embryonic stem cells, telomeres adopt a non-canonical, relaxed epigenetic state, which is characterized by a low density of histone methylation and expression of telomere non-coding transcripts (TERRA). Intriguingly, this telomere non-canonical conformation is usually associated with chromosome instability and aneuploidy in somatic cells, raising the question of how genome stability is maintained in a pluripotent background. In this review, we will explore how emerging technological and conceptual developments in 3D genome architecture can provide novel mechanistic perspectives for the pluripotent epigenetic paradox at telomeres. In particular, as RNA drives the formation of LLPS, we will consider how pluripotency-associated high levels of TERRA could drive and coordinate phase separation of several nuclear processes to ensure genome stability. These conceptual advances will provide a better understanding of telomere regulation and genome stability within the highly dynamic pluripotent background.

3.
Cell Rep ; 22(10): 2615-2627, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29514091

RESUMO

Transcriptional enhancers, including super-enhancers (SEs), form physical interactions with promoters to regulate cell-type-specific gene expression. SEs are characterized by high transcription factor occupancy and large domains of active chromatin, and they are commonly assigned to target promoters using computational predictions. How promoter-SE interactions change upon cell state transitions, and whether transcription factors maintain SE interactions, have not been reported. Here, we used promoter-capture Hi-C to identify promoters that interact with SEs in mouse embryonic stem cells (ESCs). We found that SEs form complex, spatial networks in which individual SEs contact multiple promoters, and a rewiring of promoter-SE interactions occurs between pluripotent states. We also show that long-range promoter-SE interactions are more prevalent in ESCs than in epiblast stem cells (EpiSCs) or Nanog-deficient ESCs. We conclude that SEs form cell-type-specific interaction networks that are partly dependent on core transcription factors, thereby providing insights into the gene regulatory organization of pluripotent cells.


Assuntos
Diferenciação Celular , Elementos Facilitadores Genéticos/genética , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Animais , Diferenciação Celular/genética , Redes Reguladoras de Genes , Camadas Germinativas/citologia , Camadas Germinativas/metabolismo , Camundongos , Proteína Homeobox Nanog/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica
4.
Aging Cell ; 17(3): e12745, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29504228

RESUMO

Adult neurogenesis declines with aging due to the depletion and functional impairment of neural stem/progenitor cells (NSPCs). An improved understanding of the underlying mechanisms that drive age-associated neurogenic deficiency could lead to the development of strategies to alleviate cognitive impairment and facilitate neuroregeneration. An essential step towards this aim is to investigate the molecular changes that occur in NSPC aging on a genomewide scale. In this study, we compare the transcriptional, histone methylation and DNA methylation signatures of NSPCs derived from the subventricular zone (SVZ) of young adult (3 months old) and aged (18 months old) mice. Surprisingly, the transcriptional and epigenomic profiles of SVZ-derived NSPCs are largely unchanged in aged cells. Despite the global similarities, we detect robust age-dependent changes at several hundred genes and regulatory elements, thereby identifying putative regulators of neurogenic decline. Within this list, the homeobox gene Dbx2 is upregulated in vitro and in vivo, and its promoter region has altered histone and DNA methylation levels, in aged NSPCs. Using functional in vitro assays, we show that elevated Dbx2 expression in young adult NSPCs promotes age-related phenotypes, including the reduced proliferation of NSPC cultures and the altered transcript levels of age-associated regulators of NSPC proliferation and differentiation. Depleting Dbx2 in aged NSPCs caused the reverse gene expression changes. Taken together, these results provide new insights into the molecular programmes that are affected during mouse NSPC aging, and uncover a new functional role for Dbx2 in promoting age-related neurogenic decline.


Assuntos
Proteínas de Homeodomínio/genética , Células-Tronco Neurais/metabolismo , Neurogênese/genética , Envelhecimento/genética , Animais , Proliferação de Células/genética , Células Cultivadas
5.
Genes Dev ; 30(9): 1101-15, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-27125671

RESUMO

An open and decondensed chromatin organization is a defining property of pluripotency. Several epigenetic regulators have been implicated in maintaining an open chromatin organization, but how these processes are connected to the pluripotency network is unknown. Here, we identified a new role for the transcription factor NANOG as a key regulator connecting the pluripotency network with constitutive heterochromatin organization in mouse embryonic stem cells. Deletion of Nanog leads to chromatin compaction and the remodeling of heterochromatin domains. Forced expression of NANOG in epiblast stem cells is sufficient to decompact chromatin. NANOG associates with satellite repeats within heterochromatin domains, contributing to an architecture characterized by highly dispersed chromatin fibers, low levels of H3K9me3, and high major satellite transcription, and the strong transactivation domain of NANOG is required for this organization. The heterochromatin-associated protein SALL1 is a direct cofactor for NANOG, and loss of Sall1 recapitulates the Nanog-null phenotype, but the loss of Sall1 can be circumvented through direct recruitment of the NANOG transactivation domain to major satellites. These results establish a direct connection between the pluripotency network and chromatin organization and emphasize that maintaining an open heterochromatin architecture is a highly regulated process in embryonic stem cells.


Assuntos
Heterocromatina/genética , Heterocromatina/metabolismo , Células-Tronco Embrionárias Murinas/fisiologia , Proteína Homeobox Nanog/metabolismo , Animais , Linhagem Celular , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina/genética , Regulação para Baixo , Deleção de Genes , Camundongos , Proteína Homeobox Nanog/genética , Domínios Proteicos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
FASEB J ; 27(9): 3632-42, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23729589

RESUMO

Telomeres are major regulators of genome stability and cell proliferation. A detailed understanding of the mechanisms involved in their maintenance is of foremost importance. Of those, telomere chromatin remodeling is probably the least studied; thus, we intended to explore the role of a specific histone deacetylase on telomere maintenance. We uncovered a new role for histone deacetylase 5 (HDAC5) in telomere biology. We report that HDAC5 is recruited to the long telomeres of osteosarcoma- and fibrosarcoma-derived cell lines, where it ensures proper maintenance of these repetitive regions. Indeed, depletion of HDAC5 by RNAi resulted in the shortening of longer telomeres and homogenization of telomere length in cells that use either telomerase or an alternative mechanism of telomere maintenance. Furthermore, we present evidence for the activation of telomere recombination on depletion of HDAC5 in fibrosarcoma telomerase-positive cancer cells. Of potential importance, we also found that depletion of HDAC5 sensitizes cancer cells with long telomeres to chemotherapeutic drugs. Cells with shorter telomeres were used to control the specificity of HDAC5 role in the maintenance of long telomeres. HDAC5 is essential for the length maintenance of long telomeres and its depletion is required for sensitization of cancer cells with long telomeres to chemotherapy.


Assuntos
Apoptose/fisiologia , Histona Desacetilases/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Telômero/metabolismo , Apoptose/genética , Western Blotting , Eletroforese em Gel Bidimensional , Imunofluorescência , Histona Desacetilases/genética , Células Endoteliais da Veia Umbilical Humana/enzimologia , Humanos , Hibridização in Situ Fluorescente , Recombinação Genética/genética , Telômero/genética
7.
EMBO J ; 32(12): 1681-701, 2013 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-23685356

RESUMO

Telomeres are repetitive DNA structures that, together with the shelterin and the CST complex, protect the ends of chromosomes. Telomere shortening is mitigated in stem and cancer cells through the de novo addition of telomeric repeats by telomerase. Telomere elongation requires the delivery of the telomerase complex to telomeres through a not yet fully understood mechanism. Factors promoting telomerase-telomere interaction are expected to directly bind telomeres and physically interact with the telomerase complex. In search for such a factor we carried out a SILAC-based DNA-protein interaction screen and identified HMBOX1, hereafter referred to as homeobox telomere-binding protein 1 (HOT1). HOT1 directly and specifically binds double-stranded telomere repeats, with the in vivo association correlating with binding to actively processed telomeres. Depletion and overexpression experiments classify HOT1 as a positive regulator of telomere length. Furthermore, immunoprecipitation and cell fractionation analyses show that HOT1 associates with the active telomerase complex and promotes chromatin association of telomerase. Collectively, these findings suggest that HOT1 supports telomerase-dependent telomere elongation.


Assuntos
Proteínas de Homeodomínio/metabolismo , Complexos Multiproteicos/metabolismo , Telomerase/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Telômero/metabolismo , Cromatina/genética , Cromatina/metabolismo , Células HeLa , Proteínas de Homeodomínio/genética , Humanos , Complexos Multiproteicos/genética , Sequências Repetitivas de Ácido Nucleico/fisiologia , Telomerase/genética , Telômero/genética , Proteínas de Ligação a Telômeros/genética
8.
Semin Cancer Biol ; 23(2): 116-24, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22330096

RESUMO

Telomeres are crucial for the maintenance of genome stability through "capping" of chromosome ends to prevent their recognition as double-strand breaks, thus avoiding end-to-end fusions or illegitimate recombination [1-3]. Similar to other genomic regions, telomeres participate to the nuclear architecture while being highly mobile. The interaction of telomeres with nuclear domains or compartments greatly differs not only between organisms but also between cells within the same organism. It is also expected that biological processes like replication, repair or telomere elongation impact the distribution of chromosome extremities within the nucleus, as they probably do with other regions of the genome. Pathological processes such as cancer induce profound changes in the nuclear architecture, which also affects telomere dynamics and spatial organization. Here we will expose our present knowledge on the relationship between telomeres and nuclear architecture and on how this relationship is affected by normal or abnormal telomere metabolisms.


Assuntos
Núcleo Celular/genética , Telômero/fisiologia , Animais , Núcleo Celular/metabolismo , Núcleo Celular/fisiologia , Núcleo Celular/ultraestrutura , Montagem e Desmontagem da Cromatina/fisiologia , Replicação do DNA/genética , Replicação do DNA/fisiologia , Instabilidade Genômica/fisiologia , Humanos , Modelos Biológicos , Neoplasias/genética , Neoplasias/patologia , Telômero/química , Telômero/genética , Telômero/metabolismo , Homeostase do Telômero/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA