Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Oncol ; 18(1): 62-90, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37849446

RESUMO

Hematogenous metastasis limits the survival of colorectal cancer (CRC) patients. Here, we illuminated the roles of CD44 isoforms in this process. Isoforms 3 and 4 were predominantly expressed in CRC patients. CD44 isoform 4 indicated poor outcome and correlated with epithelial-mesenchymal transition (EMT) and decreased oxidative phosphorylation (OxPhos) in patients; opposite associations were found for isoform 3. Pan-CD44 knockdown (kd) independently impaired primary tumor formation and abrogated distant metastasis in CRC xenografts. The xenograft tumors mainly expressed the clinically relevant CD44 isoforms 3 and 4. Both isoforms were enhanced in the paranecrotic, hypoxic tumor regions but were generally absent in lung metastases. Upon CD44 kd, tumor angiogenesis was increased in the paranecrotic areas, accompanied by reduced hypoxia-inducible factor-1α and CEACAM5 but increased E-cadherin expression. Mitochondrial genes and proteins were induced upon pan-CD44 kd, as were OxPhos genes. Hypoxia increased VEGF release from tumor spheres, particularly upon CD44 kd. Genes affected upon CD44 kd in xenografts specifically overlapped concordantly with genes correlating with CD44 isoform 4 (but not isoform 3) in patients, validating the clinical relevance of the used model and highlighting the metastasis-promoting role of CD44 isoform 4.


Assuntos
Angiogênese , Neoplasias Colorretais , Humanos , Xenoenxertos , Linhagem Celular Tumoral , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Neoplasias Colorretais/patologia , Transição Epitelial-Mesenquimal/genética , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo , Hipóxia/genética , Regulação Neoplásica da Expressão Gênica
2.
PeerJ ; 10: e13200, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35378930

RESUMO

Feature selection is one of the main techniques used to prevent overfitting in machine learning applications. The most straightforward approach for feature selection is an exhaustive search: one can go over all possible feature combinations and pick up the model with the highest accuracy. This method together with its optimizations were actively used in biomedical research, however, publicly available implementation is missing. We present ExhauFS-the user-friendly command-line implementation of the exhaustive search approach for classification and survival regression. Aside from tool description, we included three application examples in the manuscript to comprehensively review the implemented functionality. First, we executed ExhauFS on a toy cervical cancer dataset to illustrate basic concepts. Then, multi-cohort microarray breast cancer datasets were used to construct gene signatures for 5-year recurrence classification. The vast majority of signatures constructed by ExhauFS passed 0.65 threshold of sensitivity and specificity on all datasets, including the validation one. Moreover, a number of gene signatures demonstrated reliable performance on independent RNA-seq dataset without any coefficient re-tuning, i.e., turned out to be cross-platform. Finally, Cox survival regression models were used to fit isomiR signatures for overall survival prediction for patients with colorectal cancer. Similarly to the previous example, the major part of models passed the pre-defined concordance index threshold 0.65 on all datasets. In both real-world scenarios (breast and colorectal cancer datasets), ExhauFS was benchmarked against state-of-the-art feature selection models, including L1-regularized sparse models. In case of breast cancer, we were unable to construct reliable cross-platform classifiers using alternative feature selection approaches. In case of colorectal cancer not a single model passed the same 0.65 threshold. Source codes and documentation of ExhauFS are available on GitHub: https://github.com/s-a-nersisyan/ExhauFS.


Assuntos
Neoplasias da Mama , Neoplasias Colorretais , Feminino , Humanos , Neoplasias da Mama/genética , Software , Aprendizado de Máquina , Análise em Microsséries , Neoplasias Colorretais/genética
3.
Front Genet ; 12: 782699, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34938324

RESUMO

Interactions of the extracellular matrix (ECM) and cellular receptors constitute one of the crucial pathways involved in colorectal cancer progression and metastasis. With the use of bioinformatics analysis, we comprehensively evaluated the prognostic information concentrated in the genes from this pathway. First, we constructed a ECM-receptor regulatory network by integrating the transcription factor (TF) and 5'-isomiR interaction databases with mRNA/miRNA-seq data from The Cancer Genome Atlas Colon Adenocarcinoma (TCGA-COAD). Notably, one-third of interactions mediated by 5'-isomiRs was represented by noncanonical isomiRs (isomiRs, whose 5'-end sequence did not match with the canonical miRBase version). Then, exhaustive search-based feature selection was used to fit prognostic signatures composed of nodes from the network for overall survival prediction. Two reliable prognostic signatures were identified and validated on the independent The Cancer Genome Atlas Rectum Adenocarcinoma (TCGA-READ) cohort. The first signature was made up by six genes, directly involved in ECM-receptor interaction: AGRN, DAG1, FN1, ITGA5, THBS3, and TNC (concordance index 0.61, logrank test p = 0.0164, 3-years ROC AUC = 0.68). The second hybrid signature was composed of three regulators: hsa-miR-32-5p, NR1H2, and SNAI1 (concordance index 0.64, logrank test p = 0.0229, 3-years ROC AUC = 0.71). While hsa-miR-32-5p exclusively regulated ECM-related genes (COL1A2 and ITGA5), NR1H2 and SNAI1 also targeted other pathways (adhesion, cell cycle, and cell division). Concordant distributions of the respective risk scores across four stages of colorectal cancer and adjacent normal mucosa additionally confirmed reliability of the models.

4.
Front Pharmacol ; 12: 777114, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34955846

RESUMO

Colorectal cancer (CRC) is one of the most common and lethal types of cancer. Although researchers have made significant efforts to study the mechanisms underlying CRC drug resistance, our knowledge of this disease is still limited, and novel therapies are in high demand. It is urgent to find new targeted therapy considering limited chemotherapy options. KRAS mutations are the most frequent molecular alterations in CRC. However, there are no approved K-Ras targeted therapies for these tumors yet. GSK-3ß is demonstrated to be a critically important kinase for the survival and proliferation of K-Ras-dependent pancreatic cancer cells. In this study, we tested combinations of standard-of-care therapy and 9-ING-41, a small molecule inhibitor of GSK-3ß, in CRC cell lines and patient-derived tumor organoid models of CRC. We demonstrate that 9-ING-41 inhibits the growth of CRC cells via a distinct from chemotherapy mechanism of action. Although molecular biomarkers of 9-ING-41 efficacy are yet to be identified, the addition of 9-ING-41 to the standard-of-care drugs 5-FU and oxaliplatin could significantly enhance growth inhibition in certain CRC cells. The results of the transcriptomic analysis support our findings of cell cycle arrest and DNA repair deficiency in 9-ING-41-treated CRC cells. Notably, we find substantial similarity in the changes of the transcriptomic profile after inhibition of GSK-3ß and suppression of STK33, another critically important kinase for K-Ras-dependent cells, which could be an interesting point for future research. Overall, the results of this study provide a rationale for the further investigation of GSK-3 inhibitors in combination with standard-of-care treatment of CRC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA