Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 252(Pt 3): 119068, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38705452

RESUMO

Cellulose acetate membranes exhibit a potential to be applied in hemodialysis. However, their performance is limited by membrane fouling and a lack of antibacterial properties. In this research, copper oxide (I) nanoparticles were fabricated in situ into a cellulose acetate matrix in the presence of polyvinylpyrrolidone (pore-forming agent) and sulfobetaine (stabilising agent) to reduce the leakage of copper ions from nano-enhanced membranes. The influence of nanoparticles on the membrane structure and their antibacterial and antifouling properties were investigated. The results showed that incorporating Cu2O NPs imparted significant antibacterial properties against Staphylococcus aureus and fouling resistance under physiological conditions. The Cu2O NPs-modified membrane could pave the way for potential dialysis applications.

2.
Antioxidants (Basel) ; 13(2)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38397755

RESUMO

Gold nanoparticles (GNPs) are widely used in the technological and biomedical industries, which is a major driver of research on these nanoparticles. The main goal of this study was to determine the influence of GNPs (at 20, 100, and 200 µg/mL concentrations) on the reactivity of human peripheral blood leukocytes. Flow cytometry was used to evaluate the respiratory burst activity and pyroptosis in monocytes and granulocytes following incubation with GNPs for 30 and 60 min. Furthermore, the concentration of interleukin-1ß (IL-1ß) in human blood samples was assessed using enzyme-linked immunosorbent assay (ELISA) after their incubation with GNPs for 24 h. Under the conditions tested in the study, the GNPs did not significantly affect the production of reactive oxygen species in the granulocytes and monocytes that were not stimulated using phorbol 12-myristate 13-acetate (PMA) in comparison to the samples exposed to PMA (p < 0.05). Compared to the control sample, the greatest significant increase in the mean fluorescence intensity of the granulocytes occurred in the samples incubated with CGNPs = 100 and 200 µg/mL for tinc = 30 and 60 min (p < 0.05). From our results, we conclude that the physicochemical properties of the nanoparticles, chemical composition, and the type of nanoparticles used in the unit, along with the unit and incubation time, influence the induced toxicity.

3.
J Mater Chem B ; 11(36): 8732-8753, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37655519

RESUMO

Due to the health risks associated with the use of Gd-chelates and the promising effects of using nanoparticles as T1 contrast agents (CAs) for MRI, Mn-based nanoparticles are considered a highly competitive alternative. The use of hybrid constructs with paramagnetic functionality of Mn-based nanoparticles is an effective approach, in particular, the use of biocompatible lipid liquid crystalline nanoparticles (LLCNPs) as a carrier of MnO nanoparticles. LLCNPs possess a unique internal structure ensuring a payload of different polarity MnO nanoparticles. In view of MRI application, the surface properties including the polarity of MnO are crucial factors determining their relaxation rate and thus the MRI efficiency. Two novel hybrid constructs consisting of LLCNPs loaded with hydrophobic MnO-oleate and hydrophilic MnO-DMSA NPs were prepared. These nanosystems were studied in terms of their physico-chemical properties, positive T1 contrast enhancement properties (in vitro and in vivo) and biological safety. LLCNPs@MnO-oleate and LLCNPs@MnO-DMSA hybrids exhibited a heterogeneous phase composition, however with differences in the inner periodic arrangement and structural parameters, as well as in the preferable localization of MnO NPs within the LLCNPs. Also, these hybrids differed in terms of particle size-related parameters and colloidal stability, which was found to be strongly dependent on the addition of differently functionalized MnO NPs. Embedding both types of MnO NPs into LLCNPs resulted in high relaxivity parameters, in comparison to bare MnO-DMSA NPs and also commercially developed CAs (e.g. Dotarem and Teslascan). Further biosafety studies revealed that cell internalization pathways were dependent on the prepared hybrid type, while viability, effects on the mitochondria membrane potential and cytoskeletal networks were rather related to the susceptibility of the particular cell line. The high relaxation rates achieved with the developed hybrid LLCNPs@MnO enable them to be possibly used as novel and biologically safe MRI T1-enhancing CAs in in vivo imaging.


Assuntos
Meios de Contraste , Óxidos , Imageamento por Ressonância Magnética , Lipídeos
5.
Molecules ; 27(19)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36234912

RESUMO

Core-shell nanocomposites comprising barium titanate, BaTiO3 (BTO), and poly(methyl methacrylate) (PMMA) chains grafted from its surface with varied grafting densities were prepared. BTO nanocrystals are high-k inorganic materials, and the obtained nanocomposites exhibit enhanced dielectric permittivity, as compared to neat PMMA, and a relatively low level of loss tangent in a wide range of frequencies. The impact of the molecular dynamics, structure, and interactions of the BTO surface on the polymer chains was investigated. The nanocomposites were characterized by broadband dielectric and vibrational spectroscopies (IR and Raman), transmission electron microscopy, differential scanning calorimetry, and nuclear magnetic resonance. The presence of ceramic nanoparticles in core-shell composites slowed down the segmental dynamic of PMMA chains, increased glass transition temperature, and concurrently increased the thermal stability of the organic part. It was also evidenced that, in addition to segmental dynamics, local ß relaxation was affected. The grafting density influenced the self-organization and interactions within the PMMA phase, affecting the organization on a smaller size scale of polymeric chains. This was explained by the interaction of the exposed surface of nanoparticles with polymer chains.


Assuntos
Nanopartículas , Polimetil Metacrilato , Bário , Simulação de Dinâmica Molecular , Nanopartículas/química , Polímeros/química , Polimetil Metacrilato/química
6.
J Hazard Mater ; 440: 129783, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36027741

RESUMO

This study is devoted to the evaluation of the influence of phosphate dopants on the reactivity of Nb2O5-based nanomaterials in the combined catalytic activation of H2O2 and the elimination of methylene blue (MB) from an aqueous solution via adsorption and chemical degradation. For this purpose, several niobia-based catalysts doped with various amounts of phosphate were prepared by a facile hydrothermal method and subsequent calcination. Phosphate doping was shown to strongly enhance the ability of Nb2O5 to activate H2O2, as well as to adsorb and degrade MB. The most pronounced differences in the reactivity of the parent Nb2O5 and phosphate-doped samples were observed under strongly acidic conditions (pH ~ 2.4), at which the most active modified catalysts (Nb/P molar ratio = 5/1) was approximately 6 times more efficient in the removal of MB. The observed enhancement of reactivity was attributed to the increased generation of singlet oxygen 1O2, which was identified as the main oxidizing agent responsible for efficient degradation of MB. To our knowledge, it is the first report revealing that phosphate doping of Nb2O5 resulted in an improved activity of niobia in the adsorption and degradation of organic pollutants.

7.
Sci Rep ; 12(1): 8148, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35581357

RESUMO

The aim of our work was the synthesis of ZnO nano- and microparticles and to study the effect of shapes and sizes on cytotoxicity towards normal and cancer cells and antibacterial activity toward two kinds of bacteria. We fabricated ZnO nano- and microparticles through facile chemical and physical routes. The crystal structure, morphology, textural properties, and photoluminescent properties were characterized by powder X-ray diffraction, electron microscopies, nitrogen adsorption/desorption measurements, and photoluminescence spectroscopy. The obtained ZnO structures were highly crystalline and monodispersed with intensive green emission. ZnO NPs and NRs showed the strongest antibacterial activity against Escherichia coli and Staphylococcus aureus compared to microparticles due to their high specific surface area. However, the ZnO HSs at higher concentrations also strongly inhibited bacterial growth. S. aureus strain was more sensitive to ZnO particles than the E. coli. ZnO NPs and NRs were more harmful to cancer cell lines than to normal ones at the same concentration.


Assuntos
Nanopartículas Metálicas , Óxido de Zinco , Antibacterianos/química , Antibacterianos/farmacologia , Escherichia coli , Química Verde/métodos , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Extratos Vegetais/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus , Difração de Raios X , Óxido de Zinco/química , Óxido de Zinco/farmacologia
8.
Mikrochim Acta ; 189(4): 159, 2022 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-35348884

RESUMO

A novel non-enzymatic glucose sensor based on poly(caffeic acid)@multi-walled carbon nanotubes decorated with CuO nanoparticles (PCA@MWCNT-CuO) was developed. The described approach involves the complexation/accumulation of Cu(II) on PCA@MWCNT followed by electrochemical CuO deposition in an alkaline electrolyte. The morphology and surface characteristics of the nanomaterial were determined by transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), atomic force microscopy (AFM), Raman spectroscopy, and inductively coupled plasma mass spectrometry (ICP-MS). A hybrid-support sensor device was then developed to assess the glucose concentration in different solutions. The sensitivity of the electrode is 2412 µA mM-1 cm-2. The electrode exhibited a broad linear range of 2 µM to 9 mM and a low limit of detection (LOD) of 0.43 µM (relative standard deviation, RSD = 2.3%) at + 0.45 V vs Ag/AgCl. The excellent properties obtained for glucose detection were most likely due to the synergistic effect of the combination of individual components: poly(caffeic acid), MWCNTs, and CuO. Good accuracy and high precision were demonstrated for quantifying glucose concentrations in human serum and blood samples (the recovery ranged from 95.0 to 99.5%). The GC/PCA@MWCNT-CuO sensor represents a novel, simple, and low-cost approach to the fabrication of devices for amperometric sensing of glucose.


Assuntos
Nanopartículas , Nanotubos de Carbono , Ácidos Cafeicos , Cobre , Glucose/análise , Humanos , Nanopartículas/química , Nanotubos de Carbono/química
9.
J Nanobiotechnology ; 19(1): 168, 2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34082768

RESUMO

BACKGROUND: Lipid liquid crystalline nanoparticles (LLCNPs) emerge as a suitable system for drug and contrast agent delivery. In this regard due to their unique properties, they offer a solubility of a variety of active pharmaceutics with different polarities increasing their stability and the possibility of controlled delivery. Nevertheless, the most crucial aspect underlying the application of LLCNPs for drug or contrast agent delivery is the unequivocal assessment of their biocompatibility, including cytotoxicity, genotoxicity, and related aspects. Although studies regarding the cytotoxicity of LLCNPs prepared from various lipids and surfactants were conducted, the actual mechanism and its impact on the cells (both cancer and normal) are not entirely comprehended. Therefore, in this study, LLCNPs colloidal formulations were prepared from two most popular structure-forming lipids, i.e., glyceryl monooleate (GMO) and phytantriol (PHT) with different lipid content of 2 and 20 w/w%, and the surfactant Pluronic F-127 using the top-down approach for further comparison of their properties. Prepared formulations were subjected to physicochemical characterization and followed with in-depth biological characterization, which included cyto- and genotoxicity towards cervical cancer cells (HeLa) and human fibroblast cells (MSU 1.1), the evaluation of cytoskeleton integrity, intracellular reactive oxygen species (ROS) generation upon treatment with prepared LLCNPs and finally the identification of internalization pathways. RESULTS: Results denote the higher cytotoxicity of PHT-based nanoparticles on both cell lines on monolayers as well as cellular spheroids, what is in accordance with evaluation of ROS activity level and cytoskeleton integrity. Detected level of ROS in cells upon the treatment with LLCNPs indicates their insignificant contribution to the cellular redox balance for most concentrations, however distinct for GMO- and PHT-based LLCNPs. The disintegration of cytoskeleton after administration of LLCNPs implies the relation between LLCNPs and F-actin filaments. Additionally, the expression of four genes involved in DNA damage and important metabolic processes was analyzed, indicating concentration-dependent differences between PHT- and GMO-based LLCNPs. CONCLUSIONS: Overall, GMO-based LLCNPs emerge as potentially more viable candidates for drug delivery systems as their impact on cells is not as deleterious as PHT-based as well as they were efficiently internalized by cell monolayers and 3D spheroids.


Assuntos
Álcoois Graxos/toxicidade , Glicerídeos/toxicidade , Nanopartículas/química , Química Farmacêutica , Portadores de Fármacos/química , Composição de Medicamentos , Sistemas de Liberação de Medicamentos/métodos , Álcoois Graxos/química , Glicerídeos/química , Humanos , Lipídeos/química , Testes de Mutagenicidade , Tamanho da Partícula , Poloxâmero/química , Poloxâmero/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Solubilidade , Tensoativos
10.
Colloids Surf B Biointerfaces ; 205: 111871, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34051668

RESUMO

Liposomes are phospholipid-based self-assembled nanoparticles. Various components can be solubilized in the lipid bilayer, encapsulated in the aqueous core or attached to the surface, making liposomes attractive platforms for multimodality functionalization. Here we describe theranostic liposomes delivering a magnetic resonance contrast agent (lipid derivative of gadopentetic acid) and a hydrophobic photosensitizer (zinc phthalocyanine, ZnPc) for photodynamic therapy of cancer. For the first time, this theranostic system was prepared by the microfluidic method. Analogous formulations were produced by thin lipid film hydration (TLH) with down-sizing performed by extrusion for comparison purposes. We demonstrated double the loading capacity of ZnPc into liposomes made by microfluidics compared to TLH/extrusion. Microfluidics resulted in the theranostic nanoliposomes characterized by sizes =2.5x smaller than vesicles prepared by TLH/extrusion. Increased relaxivity was observed for liposomes manufactured by microfluidics compared to TLH, despite a slightly lower Gd chelate recovery. We attributed the improved relaxation to the increased surface area/volume ratio of vesicles and decreased phosphatidylcholine/ZnPc molar ratio, which affected water molecules' diffusion through the liposomal membrane. Finally, we showed photodynamic efficacy of ZnPc loaded into theranostic liposomes in head and neck cancer model, resulting in IC50 of 0.22 - 0.61 µM, depending on the formulation and cell line used. We demonstrate microfluidics' feasibility to be used for theranostic liposome manufacturing and co-entrapment of therapeutic and imaging components in a single-step process with a high yield.


Assuntos
Microfluídica , Fotoquimioterapia , Lipossomos , Fosfatidilcolinas , Medicina de Precisão
11.
Int J Mol Sci ; 22(9)2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33925955

RESUMO

The FTO protein is involved in a wide range of physiological processes, including adipogenesis and osteogenesis. This two-domain protein belongs to the AlkB family of 2-oxoglutarate (2-OG)- and Fe(II)-dependent dioxygenases, displaying N6-methyladenosine (N6-meA) demethylase activity. The aim of the study was to characterize the relationships between the structure and activity of FTO. The effect of cofactors (Fe2+/Mn2+ and 2-OG), Ca2+ that do not bind at the catalytic site, and protein concentration on FTO properties expressed in either E. coli (ECFTO) or baculovirus (BESFTO) system were determined using biophysical methods (DSF, MST, SAXS) and biochemical techniques (size-exclusion chromatography, enzymatic assay). We found that BESFTO carries three phosphoserines (S184, S256, S260), while there were no such modifications in ECFTO. The S256D mutation mimicking the S256 phosphorylation moderately decreased FTO catalytic activity. In the presence of Ca2+, a slight stabilization of the FTO structure was observed, accompanied by a decrease in catalytic activity. Size exclusion chromatography and MST data confirmed the ability of FTO from both expression systems to form homodimers. The MST-determined dissociation constant of the FTO homodimer was consistent with their in vivo formation in human cells. Finally, a low-resolution structure of the FTO homodimer was built based on SAXS data.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/fisiologia , Catálise , Domínio Catalítico , Dioxigenases/genética , Humanos , Ácidos Cetoglutáricos/metabolismo , Processamento de Proteína Pós-Traducional/genética , RNA Mensageiro/genética , Espalhamento a Baixo Ângulo , Relação Estrutura-Atividade , Difração de Raios X/métodos
12.
Int J Mol Sci ; 22(6)2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33803568

RESUMO

Virus-like particles (VLPs), due to their nanoscale dimensions, presence of interior cavities, self-organization abilities and responsiveness to environmental changes, are of interest in the field of nanotechnology. Nevertheless, comprehensive knowledge of VLP self-assembly principles is incomplete. VLP formation is governed by two types of interactions: protein-cargo and protein-protein. These interactions can be modulated by the physicochemical properties of the surroundings. Here, we used brome mosaic virus (BMV) capsid protein produced in an E. coli expression system to study the impact of ionic strength, pH and encapsulated cargo on the assembly of VLPs and their features. We showed that empty VLP assembly strongly depends on pH whereas ionic strength of the buffer plays secondary but significant role. Comparison of VLPs containing tRNA and polystyrene sulfonic acid (PSS) revealed that the structured tRNA profoundly increases VLPs stability. We also designed and produced mutated BMV capsid proteins that formed VLPs showing altered diameters and stability compared to VLPs composed of unmodified proteins. We also observed that VLPs containing unstructured polyelectrolyte (PSS) adopt compact but not necessarily more stable structures. Thus, our methodology of VLP production allows for obtaining different VLP variants and their adjustment to the incorporated cargo.


Assuntos
Bromovirus/metabolismo , Proteínas do Capsídeo/metabolismo , Escherichia coli/metabolismo , Proteínas Recombinantes/metabolismo , Vírion/metabolismo , Bromovirus/ultraestrutura , Modelos Moleculares , Tamanho da Partícula , RNA de Transferência/metabolismo , Temperatura , Vírion/ultraestrutura
13.
Int J Nanomedicine ; 15: 7415-7431, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33116479

RESUMO

INTRODUCTION: AT101, the R-(-)-enantiomer of the cottonseed-derived polyphenol gossypol, is a promising drug in glioblastoma multiforme (GBM) therapy due to its ability to trigger autophagic cell death but also to facilitate apoptosis in tumor cells. It does have some limitations such as poor solubility in water-based media and consequent low bioavailability, which affect its response rate during treatment. To overcome this drawback and to improve the anti-cancer potential of AT101, the use of cubosome-based formulation for AT101 drug delivery has been proposed. This is the first report on the use of cubosomes as AT101 drug carriers in GBM cells. MATERIALS AND METHODS: Cubosomes loaded with AT101 were prepared from glyceryl monooleate (GMO) and the surfactant Pluronic F-127 using the top-down approach. The drug was introduced into the lipid prior to dispersion. Prepared formulations were then subjected to complex physicochemical and biological characterization. RESULTS: Formulations of AT101-loaded cubosomes were highly stable colloids with a high drug entrapment efficiency (97.7%) and a continuous, sustained drug release approaching 35% over 72 h. Using selective and sensitive NMR diffusometry, the drug was shown to be efficiently bound to the lipid-based cubosomes. In vitro imaging studies showed the high efficiency of cubosomal nanoparticles uptake into GBM cells, as well as their marked ability to penetrate into tumor spheroids. Treatment of GBM cells with the AT101-loaded cubosomes, but not with the free drug, induced cytoskeletal rearrangement and shortening of actin fibers. The prepared nanoparticles revealed stronger in vitro cytotoxic effects against GBM cells (A172 and LN229 cell lines), than against normal brain cells (SVGA and HMC3 cell lines). CONCLUSION: The results indicate that GMO-AT101 cubosome formulations are a promising basic tool for alternative approaches to GBM treatment.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Portadores de Fármacos/química , Glioblastoma/tratamento farmacológico , Gossipol/análogos & derivados , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/farmacocinética , Disponibilidade Biológica , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Coloides/química , Coloides/farmacologia , Citoesqueleto/efeitos dos fármacos , Preparações de Ação Retardada/química , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/farmacocinética , Sistemas de Liberação de Medicamentos/métodos , Glioblastoma/patologia , Glicerídeos/química , Gossipol/administração & dosagem , Gossipol/farmacocinética , Gossipol/farmacologia , Humanos , Lipídeos/química , Espectroscopia de Ressonância Magnética/métodos , Nanopartículas/administração & dosagem , Nanopartículas/química , Poloxâmero/química , Solubilidade
14.
Phys Chem Chem Phys ; 22(38): 21947-21960, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32974628

RESUMO

Improvement in the performance of perovskite solar cells (PSC) and dye-sensitized solar cells (DSSC) upon modifications of mesoporous titania layers has been studied. For PSC with triple cation perovskite (FA0.76 MA0.19 Cs0.05 Pb (I0.81 Br0.19)3) about 40% higher photocurrent (up to ∼24 mA cm-2) was found for more homogenous, made of larger particles (30 nm) and thinner (150-200 nm) titania layer. For DSSC (both with liquid cobalt-based electrolyte as well as with solid state hole transporter - spiro-OMeTAD), a greater dye loading, rise in photovoltage, and the enhancement in relative photocurrent were observed for the cells prepared from the diluted titania paste (2 : 1 w/w ratio) with respect to those prepared from undiluted one. The impact of these improvements in titania layers on charge transfer dynamics in the complete solar cells as well as in pristine TiO2 layers was investigated by femtosecond transient absorption. Shorter photocarriers lifetime in perovskite material observed in better PSC, indicated that faster electron transfer at the titania interface was responsible for the higher photocurrent. Moreover, the photoinduced changes close to TiO2 interface were revealed in better PSC, which may indicate that in the efficient devices halide segregation takes place in perovskite material. In liquid DSSC, the fast component of unwanted recombination was slower in the samples with the diluted titania paste than in those made with undiluted ones. In solid state DSSC, hole injection from MK2 dye to spiro-OMeTAD takes place on the very fast ps time scale (comparable to that of electron injection) and the evidence of better penetration of spiro-OMeTAD into thinner and more porous titania layers was provided.

15.
Materials (Basel) ; 14(1)2020 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-33383718

RESUMO

In this study, GNF@ZnO composites (gelatin nanofibers (GNF) with zinc oxide (ZnO) nanoparticles (NPs)) as a novel antibacterial agent were obtained using a wet chemistry approach. The physicochemical characterization of ZnO nanoparticles (NPs) and GNF@ZnO composites, as well as the evaluation of their antibacterial activity toward Gram-positive (Staphyloccocus aureus and Bacillus pumilus) and Gram-negative (Escherichia coli and Pseudomonas fluorescens) bacteria were performed. ZnO NPs were synthesized using a facile sol-gel approach. Gelatin nanofibers (GNF) were obtained by an electrospinning technique. GNF@ZnO composites were obtained by adding previously produced GNF into a Zn2+ methanol solution during ZnO NPs synthesis. Crystal structure, phase, and elemental compositions, morphology, as well as photoluminescent properties of pristine ZnO NPs, pristine GNF, and GNF@ZnO composites were characterized using powder X-ray diffraction (XRD), FTIR analysis, transmission and scanning electron microscopies (TEM/SEM), and photoluminescence spectroscopy. SEM, EDX, as well as FTIR analyses, confirmed the adsorption of ZnO NPs on the GNF surface. The pristine ZnO NPs were highly crystalline and monodispersed with a size of approximately 7 nm and had a high surface area (83 m2/g). The thickness of the pristine gelatin nanofiber was around 1 µm. The antibacterial properties of GNF@ZnO composites were investigated by a disk diffusion assay on agar plates. Results show that both pristine ZnO NPs and their GNF-based composites have the strongest antibacterial properties against Pseudomonas fluorescence and Staphylococcus aureus, with the zone of inhibition above 10 mm. Right behind them is Escherichia coli with slightly less inhibition of bacterial growth. These properties of GNF@ZnO composites suggest their suitability for a range of antimicrobial uses, such as in the food industry or in biomedical applications.

16.
Nanomaterials (Basel) ; 9(8)2019 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-31390754

RESUMO

Noble metal nanoparticles (NMNPs) enhanced TiO2 response and extended its activity under visible light. Photocatalytic activity of TiO2 modified with noble metal nanoparticles strongly depends on the physicochemical properties of NMNPs. Among others, the differences in the size of NMNPs seems to be one of the most important factors. In this view, the effect of the metal's nanoparticles size, type and amount on TiO2 photocatalytic and biocidal activity was investigated. TiO2 modified with mono- and bimetallic nanoparticles of Pt, Cu and Ag were prepared using chemical and thermal reduction methods. Obtained nanocomposites were characterized using transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and diffuse-reflectance spectroscopy (DR/UV-Vis) techniques. The photocatalytic activity was examined in 2-propanol oxidation and hydrogen generation processes. The mechanism of modified TiO2 excitation was evaluated in action spectrum measurements during phenol oxidation. A possibility of using less energy-consuming light sources as a set of light-emitting diodes (LEDs) selected based on action spectrum results was examined. It was found that the differences in NMNPs size were the result of the reduction method. Moreover, coupling with a second metal strongly affected and differentiated the photocatalytic and biocidal activity of the obtained TiO2-based photocatalysts.

17.
Indoor Air ; 29(6): 979-992, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31469187

RESUMO

The photocatalytic deactivation of volatile organic compounds and mold fungi using TiO2 modified with mono- and bimetallic (Pt, Cu, Ag) particles is reported in this study. The mono- and bimetal-modified (Pt, Cu, Ag) titanium(IV) oxide photocatalysts were prepared by chemical reduction method and characterized using XRD, XPS, DR/UV-Vis, BET, and TEM analysis. The effect of incident light, type and content of mono- and bimetallic nanoparticles deposited on titanium(IV) oxide was studied. Photocatalytic activity of as-prepared nanocomposites was examined in the gas phase using LEDs array. High photocatalytic activity of Ag/Pt-TiO2 and Cu/Pt-TiO2 in the reaction of toluene degradation resulted from improved efficiency of interfacial charge transfer process, which was consistent with the fluorescence quenching effect revealed by photoluminescence (PL) emission spectra. The photocatalytic deactivation of Penicillium chrysogenum, a pathogenic fungi present in the indoor environment, especially in a damp or water-damaged building using mono- and bimetal-modified (Pt, Cu, Ag) titanium(IV) oxide was evaluated for the first time. TiO2 modified with mono- and bimetallic NPs of Ag/Pt, Cu, and Ag deposited on TiO2 exhibited improved fungicidal activity under LEDs illumination than pure TiO2 .


Assuntos
Poluentes Atmosféricos/isolamento & purificação , Fungos/isolamento & purificação , Nanocompostos/química , Óxidos , Compostos Orgânicos Voláteis/isolamento & purificação , Microbiologia do Ar , Poluição do Ar em Ambientes Fechados , Cobre , Platina , Prata , Titânio
18.
J Mater Sci Mater Med ; 30(2): 22, 2019 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-30747353

RESUMO

Due to development of nanotechnology and gold nanoparticles (AuNPs) increasing use in different areas of medicine, especially in oncology, better understanding of their potential cytotoxicity is necessary to protect patients safety. Shape and size of AuNPs is an important modulator of their cytotoxicity. Therefore, we investigated the cytotoxicity of AuNPs rods (≈39 nm length, 18 nm width), AuNPs stars (≈ 215 nm) and AuNPs spheres (≈ 6.3 nm) against human fetal osteoblast (hFOB 1.19), osteosarcoma (143B, MG63) and pancreatic duct cell (hTERT-HPNE) lines by MTT and neutral-red uptake assay. Moreover, influence of AuNPs on level of proapoptotic protein (Bax) and anti-apoptotic protein (Bcl-2) was measured by western blot. Cellular uptake of nanoparticles and ultrastructure changes were examined by transmission electron microscopy (TEM). In the present study we have proven that AuNPs stars are the most cytotoxic against human cells. We observed that cancer cells are more susceptible to AuNPs cytotoxic effect. Furthermore, AuNPs rods and AuNPs stars caused increased expression of Bax and decreased expression of Bcl-2 protein in osteosarcoma cells. We found that AuNPs penetrated through the cell membrane and caused ultrastructural changes. Our results clearly demonstrated that the cytotoxicity of AuNPs was shape-dependent. AuNPs stars with the highest anti-cancer potential were also the most cytotoxic type of tested NPs, whereas AuNPs spheres which appears to be the safest one had small anti-cancer potential.


Assuntos
Antineoplásicos/farmacologia , Ouro/química , Nanopartículas Metálicas/química , Osteoblastos/efeitos dos fármacos , Osteossarcoma/tratamento farmacológico , Células A549 , Materiais Biocompatíveis , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Células Hep G2 , Humanos , Nanosferas , Osteoblastos/metabolismo , Osteossarcoma/metabolismo , Ductos Pancreáticos , Tamanho da Partícula , Segurança do Paciente , Proteína X Associada a bcl-2/metabolismo
19.
Chemistry ; 25(23): 5978-5986, 2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-30802348

RESUMO

Perovskite solar cells, composed of a mixture of methylammonium (MA) and formamidinium (FA) cations [in the benchmark proportions of (FAPbI3 )0.85 (MAPbBr3 )0.15 ] and titania as an electron-accepting material, are prepared under different conditions, with the objective of finding correlations between the solar cell performance and several important stationary and dynamical parameters of the material. The effects of humidity, oxygen, the use of anti-solvent, and the presence and quality of a mesoporous titania layer are investigated. It is found that an increase in the photocurrent corresponds to a higher content of the desired cubic perovskite phase and to increased long-wavelength absorption of the sample. On the contrary, for poorer-quality cells, additional short-wavelength bands in both absorption and emission spectra are present. Furthermore, a higher photocurrent of the cells is correlated with faster interfacial charge-transfer dynamics. For the highest photocurrent of >20 mA cm-2 , the characteristic times of about 1 µs are observed by electrochemical impedance spectroscopy, and emission half-lifetimes of about 6 ns by time-resolved fluorescence spectroscopy (upon excitation with 420 nm pulses of ≈0.5 mW power). Both first- and second-order rate constants, extracted from the emission measurements, are greater for the cells showing higher photocurrents, probably owing to a more rapid charge injection.

20.
Int J Mol Sci ; 20(3)2019 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-30696013

RESUMO

Seed priming is a pre-sowing method successfully used to improve seed germination. Since water plays a crucial role in germination, the aim of this study was to investigate the relationship between better germination performances of osmoprimed Brassica napus seeds and seed water status during germination. To achieve this goal, a combination of different kinds of approaches was used, including nuclear magnetic resonance (NMR) spectroscopy, TEM, and SEM as well as semi-quantitative PCR (semi-qPCR). The results of this study showed that osmopriming enhanced the kinetics of water uptake and the total amount of absorbed water during both the early imbibition stage and in the later phases of seed germination. The spin⁻spin relaxation time (T2) measurement suggests that osmopriming causes faster water penetration into the seed and more efficient tissue hydration. Moreover, factors potentially affecting water relations in germinating primed seeds were also identified. It was shown that osmopriming (i) changes the microstructural features of the seed coat, e.g., leads to the formation of microcracks, (ii) alters the internal structure of the seed by the induction of additional void spaces in the seed, (iii) increases cotyledons cells vacuolization, and (iv) modifies the expression pattern of aquaporin genes.


Assuntos
Brassica napus/crescimento & desenvolvimento , Germinação , Sementes/crescimento & desenvolvimento , Água/fisiologia , Aquaporinas/genética , Aquaporinas/metabolismo , Brassica napus/ultraestrutura , Cotilédone/citologia , Cotilédone/ultraestrutura , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Cinética , Sementes/ultraestrutura , Vacúolos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA