Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
medRxiv ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-39040198

RESUMO

Patients with inflammatory bowel disease (IBD) are at increased risk of colorectal cancer (CRC), and this risk increases dramatically in those who develop low-grade dysplasia (LGD). However, there is currently no accurate way to risk-stratify patients with LGD, leading to both over- and under-treatment of cancer risk. Here we show that the burden of somatic copy number alterations (CNAs) within resected LGD lesions strongly predicts future cancer development. We performed a retrospective multi-centre validated case-control study of n=122 patients (40 progressors, 82 non-progressors, 270 LGD regions). Low coverage whole genome sequencing revealed CNA burden was significantly higher in progressors than non-progressors (p=2×10-6 in discovery cohort) and was a very significant predictor of CRC risk in univariate analysis (odds ratio = 36; p=9×10-7), outperforming existing clinical risk factors such as lesion size, shape and focality. Optimal risk prediction was achieved with a multivariate model combining CNA burden with the known clinical risk factor of incomplete LGD resection. The measurement of CNAs in LGD lesions is a robust, low-cost and rapidly translatable predictor of CRC risk in IBD that can be used to direct management and so prevent CRC in high-risk individuals whilst sparing those at low-risk from unnecessary intervention.

2.
Res Sq ; 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37090678

RESUMO

Locally advanced oesophageal adenocarcinoma (EAC) remains difficult to treat because of common resistance to neoadjuvant therapy and high recurrence rates. The ecological and evolutionary dynamics responsible for treatment failure are incompletely understood. Here, we performed a comprehensive multi-omic analysis of samples collected from EAC patients in the MEMORI clinical trial, revealing major changes in gene expression profiles and immune microenvironment composition that did not appear to be driven by changes in clonal composition. Multi-region multi-timepoint whole exome (300x depth) and paired transcriptome sequencing was performed on 27 patients pre-, during and after neoadjuvant treatment. EAC showed major transcriptomic changes during treatment with upregulation of immune and stromal pathways and oncogenic pathways such as KRAS, Hedgehog and WNT. However, genetic data revealed that clonal sweeps were rare, suggesting that gene expression changes were not clonally driven. Additional longitudinal image mass cytometry was performed in a subset of 15 patients and T-cell receptor sequencing in 10 patients, revealing remodelling of the T-cell compartment during treatment and other shifts in microenvironment composition. The presence of immune escape mechanisms and a lack of clonal T-cell expansions were linked to poor clinical treatment response. This study identifies profound transcriptional changes during treatment with limited evidence that clonal replacement is the cause, suggesting phenotypic plasticity and immune dynamics as mechanisms for therapy resistance with pharmacological relevance.

3.
Nat Genet ; 54(6): 850-860, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35681052

RESUMO

Ductal carcinoma in situ (DCIS) is the most common form of preinvasive breast cancer and, despite treatment, a small fraction (5-10%) of DCIS patients develop subsequent invasive disease. A fundamental biologic question is whether the invasive disease arises from tumor cells in the initial DCIS or represents new unrelated disease. To address this question, we performed genomic analyses on the initial DCIS lesion and paired invasive recurrent tumors in 95 patients together with single-cell DNA sequencing in a subset of cases. Our data show that in 75% of cases the invasive recurrence was clonally related to the initial DCIS, suggesting that tumor cells were not eliminated during the initial treatment. Surprisingly, however, 18% were clonally unrelated to the DCIS, representing new independent lineages and 7% of cases were ambiguous. This knowledge is essential for accurate risk evaluation of DCIS, treatment de-escalation strategies and the identification of predictive biomarkers.


Assuntos
Neoplasias da Mama , Carcinoma Ductal de Mama , Carcinoma Intraductal não Infiltrante , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/genética , Carcinoma Intraductal não Infiltrante/genética , Carcinoma Intraductal não Infiltrante/patologia , Feminino , Genômica , Humanos , Recidiva Local de Neoplasia/genética
4.
Oncogene ; 39(18): 3666-3679, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32139877

RESUMO

Fatty acid synthase (FASN) is commonly overexpressed in prostate cancer and associated with tumour progression. FASN is responsible for de novo synthesis of the fatty acid palmitate; the building block for protein palmitoylation. Recent work has suggested that alongside its established role in promoting cell proliferation FASN may also promote invasion. We now find depletion of FASN expression increases prostate cancer cell adhesiveness, impairs HGF-mediated cell migration and reduces 3D invasion. These changes in motility suggest that FASN can mediate actin cytoskeletal remodelling; a process known to be downstream of Rho family GTPases. Here, we demonstrate that modulation of FASN expression specifically impacts on the palmitoylation of the atypical GTPase RhoU. Impaired RhoU activity in FASN depleted cells leads to reduced adhesion turnover downstream of paxillin serine phosphorylation, which is rescued by addition of exogenous palmitate. Moreover, canonical Cdc42 expression is dependent on the palmitoylation status of RhoU. Thus we uncover a novel relationship between FASN, RhoU and Cdc42 that directly influences cell migration potential. These results provide compelling evidence that FASN activity directly promotes cell migration and supports FASN as a potential therapeutic target in metastatic prostate cancer.


Assuntos
Ácido Graxo Sintase Tipo I/genética , Lipogênese/genética , Neoplasias da Próstata/genética , Proteína cdc42 de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/genética , Adesão Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Masculino , Fosforilação/genética , Próstata/metabolismo , Próstata/patologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Transdução de Sinais/genética
5.
Oncotarget ; 9(16): 12812-12824, 2018 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-29560112

RESUMO

Novel approaches for classification, including molecular features, are needed to direct therapy for men with low-grade prostate cancer (PCa), especially men on active surveillance. Risk alleles identified from genome-wide association studies (GWAS) could improve prognostication. Those risk alleles that coincided with genes and somatic copy number aberrations associated with progression of PCa were selected as the most relevant for prognostication. In a systematic literature review, a total of 698 studies were collated. Fifty-three unique SNPs residing in 29 genomic regions, including 8q24, 10q11 and 19q13, were associated with PCa progression. Functional studies implicated 21 of these single nucleotide polymorphisms (SNPs) as modulating the expression of genes in the androgen receptor pathway and several other oncogenes. In particular, 8q24, encompassing MYC, harbours a high density of SNPs conferring unfavourable pathological characteristics in low-grade PCa, while a copy number gain of MYC in low-grade PCa was associated with prostate-specific antigen recurrence after radical prostatectomy. By combining GWAS data with gene expression and structural rearrangements, risk alleles were identified that could provide a new basis for developing a prognostication tool to guide therapy for men with early prostate cancer.

6.
Breast Cancer Res ; 19(1): 7, 2017 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-28095868

RESUMO

BACKGROUND: Lobular carcinoma in situ (LCIS) is a non-invasive breast lesion that is typically found incidentally on biopsy and is often associated with invasive lobular carcinoma (ILC). LCIS is considered by some to be a risk factor for future breast cancer rather than a true precursor lesion. The aim of this study was to identify genetic changes that could be used as biomarkers of progression of LCIS to invasive disease using cases of pure LCIS and comparing their genetic profiles to LCIS which presented contemporaneously with associated ILC, on the hypothesis that the latter represents LCIS that has already progressed. METHODS: Somatic copy number aberrations (SCNAs) were assessed by SNP array in three subgroups: pure LCIS, LCIS associated with ILC and the paired ILC. In addition exome sequencing was performed on seven fresh frozen samples of LCIS associated with ILC, to identify recurrent somatic mutations. RESULTS: The copy number profiles of pure LCIS and LCIS associated with ILC were almost identical. However, four SCNAs were more frequent in ILC than LCIS associated with ILC, including gain/amplification of CCND1. CCND1 protein over-expression assessed by immunohistochemical analysis in a second set of samples from 32 patients with pure LCIS and long-term follow up, was associated with invasive recurrence (P = 0.02, Fisher's exact test). Exome sequencing revealed that PIK3CA mutations were as frequent as CDH1 mutations in LCIS, but were not a useful biomarker of LCIS progression as they were as frequent in pure LCIS as in LCIS associated with ILC. We also observed heterogeneity of PIK3CA mutations and evidence of sub-clonal populations in LCIS irrespective of whether they were associated with ILC. CONCLUSIONS: Our data shows that pure LCIS and LCIS co-existing with ILC have very similar SCNA profiles, supporting the hypothesis that LCIS is a true precursor lesion. We have provided evidence that over-expression of CCND1 may identify a subgroup of patients with pure LCIS who are more likely to develop invasive disease, in contrast to PIK3CA mutations, which occur too early in lobular tumorigenesis to be informative.


Assuntos
Carcinoma de Mama in situ/genética , Carcinoma de Mama in situ/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Carcinoma Lobular/genética , Carcinoma Lobular/patologia , Mutação , Fosfatidilinositol 3-Quinases/genética , Alelos , Biomarcadores , Mapeamento Cromossômico , Classe I de Fosfatidilinositol 3-Quinases , Variações do Número de Cópias de DNA , Análise Mutacional de DNA , Progressão da Doença , Exoma , Feminino , Frequência do Gene , Heterogeneidade Genética , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Repetições de Microssatélites , Fosfatidilinositol 3-Quinases/metabolismo , Polimorfismo de Nucleotídeo Único
7.
PLoS Genet ; 10(4): e1004285, 2014 04.
Artigo em Inglês | MEDLINE | ID: mdl-24743323

RESUMO

Invasive lobular breast cancer (ILC) accounts for 10-15% of all invasive breast carcinomas. It is generally ER positive (ER+) and often associated with lobular carcinoma in situ (LCIS). Genome-wide association studies have identified more than 70 common polymorphisms that predispose to breast cancer, but these studies included predominantly ductal (IDC) carcinomas. To identify novel common polymorphisms that predispose to ILC and LCIS, we pooled data from 6,023 cases (5,622 ILC, 401 pure LCIS) and 34,271 controls from 36 studies genotyped using the iCOGS chip. Six novel SNPs most strongly associated with ILC/LCIS in the pooled analysis were genotyped in a further 516 lobular cases (482 ILC, 36 LCIS) and 1,467 controls. These analyses identified a lobular-specific SNP at 7q34 (rs11977670, OR (95%CI) for ILC = 1.13 (1.09-1.18), P = 6.0 × 10(-10); P-het for ILC vs IDC ER+ tumors = 1.8 × 10(-4)). Of the 75 known breast cancer polymorphisms that were genotyped, 56 were associated with ILC and 15 with LCIS at P<0.05. Two SNPs showed significantly stronger associations for ILC than LCIS (rs2981579/10q26/FGFR2, P-het = 0.04 and rs889312/5q11/MAP3K1, P-het = 0.03); and two showed stronger associations for LCIS than ILC (rs6678914/1q32/LGR6, P-het = 0.001 and rs1752911/6q14, P-het = 0.04). In addition, seven of the 75 known loci showed significant differences between ER+ tumors with IDC and ILC histology, three of these showing stronger associations for ILC (rs11249433/1p11, rs2981579/10q26/FGFR2 and rs10995190/10q21/ZNF365) and four associated only with IDC (5p12/rs10941679; rs2588809/14q24/RAD51L1, rs6472903/8q21 and rs1550623/2q31/CDCA7). In conclusion, we have identified one novel lobular breast cancer specific predisposition polymorphism at 7q34, and shown for the first time that common breast cancer polymorphisms predispose to LCIS. We have shown that many of the ER+ breast cancer predisposition loci also predispose to ILC, although there is some heterogeneity between ER+ lobular and ER+ IDC tumors. These data provide evidence for overlapping, but distinct etiological pathways within ER+ breast cancer between morphological subtypes.


Assuntos
Neoplasias da Mama/genética , Carcinoma in Situ/genética , Carcinoma Lobular/genética , Predisposição Genética para Doença/genética , Estudos de Casos e Controles , Feminino , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA