Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 14416, 2024 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-38909091

RESUMO

The COVID-19 pandemic has profoundly affected all aspects of our lives. Through real-time monitoring and rapid vaccine implementation, we succeeded in suppressing the spread of the disease and mitigating its consequences. Finally, conclusions can be summarized and drawn. Here, we use the example of Poland, which was seriously affected by the pandemic. Compared to other countries, Poland has not achieved impressive results in either testing or vaccination, which may explain its high mortality (case fatality rate, CFR 1.94%). Through retrospective analysis of data collected by the COVID-19 Data Portal Poland, we found significant regional differences in the number of tests performed, number of cases detected, number of COVID-19-related deaths, and vaccination rates. The Masovian, Greater Poland, and Pomeranian voivodeships, the country's leaders in vaccination, reported high case numbers but low death rates. In contrast, the voivodeships in the eastern and southern parts of Poland (Subcarpathian, Podlaskie, Lublin, Opole), which documented low vaccination levels and low case numbers, had higher COVID-19-related mortality rates. The strong negative correlation between the CFR and the percentage of the population that was vaccinated in Poland supports the validity of vaccination. To gain insight into virus evolution, we sequenced more than 500 genomes and analyzed nearly 80 thousand SARS-CoV-2 genome sequences deposited in GISAID by Polish diagnostic centers. We showed that the SARS-CoV-2 variant distribution over time in Poland reflected that in Europe. Haplotype network analysis allowed us to follow the virus transmission routes and identify potential superspreaders in each pandemic wave.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Pandemias , SARS-CoV-2 , Polônia/epidemiologia , COVID-19/epidemiologia , COVID-19/virologia , COVID-19/prevenção & controle , Humanos , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Estudos Retrospectivos , Genoma Viral , Genômica/métodos , Vacinação
2.
Database (Oxford) ; 2021(2021)2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34788390

RESUMO

Circular RNAs (circRNAs) are a large class of noncoding RNAs with functions that, in most cases, remain unknown. Recent genome-wide analysis of circRNAs using RNA-Seq has revealed that circRNAs are abundant and some of them conserved in plants. Furthermore, it has been shown that the expression of circRNAs in plants is regulated in a tissue-specific manner. Arabidopsis thaliana circular RNA database is a new resource designed to integrate and standardize the data available for circRNAs in a model plant A. thaliana, which is currently the best-characterized plant in terms of circRNAs. The resource integrates all applicable publicly available RNA-seq datasets. These datasets were subjected to extensive reanalysis and curation, yielding results in a unified format. Moreover, all data were normalized according to our optimized approach developed for circRNA identification in plants. As a result, the database accommodates circRNAs identified across organs and seedlings of wild-type A. thaliana and its single-gene knockout mutants for genes related to splicing. The database provides free access to unified data and search functionalities, thus enabling comparative analyses of A. thaliana circRNAs between organs, variants and studies for the first time. Database URLhttps://plantcircrna.ibch.poznan.pl/.


Assuntos
Arabidopsis , RNA Circular , Arabidopsis/genética , Bases de Dados de Ácidos Nucleicos , RNA/genética , Splicing de RNA , RNA não Traduzido
3.
Sci Total Environ ; 765: 144176, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33385807

RESUMO

The emergence and spread of clinical pathogens, antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in the environment pose a direct threat to human and animal health worldwide. In this study, we analyzed qualitatively and quantitatively urban sewage resistome for the occurrence of genes encoding resistance to ß-lactams and glycopeptides in the genomes of culturable bacteria, as well as in the wastewater metagenome of the Central Wastewater Treatment Plant in Kozieglowy (Poland). Moreover, we estimated the presence of pathogenic Gram-positive bacteria in wastewater based on analysis of species-specific virulence genes in the wastewater metagenome. The results show that the final effluent contains alarm pathogens with particularly dangerous mechanisms of antibiotic resistance, including methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE). We also noticed that during the wastewater treatment, there is an increase in the frequency of MRSA and VRE. Furthermore, the results prove the effective removal of vanA, but at the same time show that wastewater treatment increases the relative abundance of mecA and virulence genes (groES and sec), indicating the presence of clinical pathogens E. faecalis and S. aureus in the effluent released to surface waters. We also observed an increase in the relative abundance of mecA and vanA genes already in the aeration tank, which suggests accumulation of contaminants affecting enhanced selection and HGT processes in the activated sludge. Moreover, we found a relation between the taxonomic composition and the copy number of ARGs as well as the presence of pathogens at various stages of wastewater treatment. The presence of clinically relevant pathogens, ARB, including multi-resistant bacteria, and ARGs in the effluent indicates that wastewater treatment plant play a key role in the existence of pathogens and antimicrobial resistance spreading pathway in the environment and human communities, which is a direct threat to public health and environmental protection.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Águas Residuárias , Antagonistas de Receptores de Angiotensina , Inibidores da Enzima Conversora de Angiotensina , Antibacterianos , Genes Bacterianos , Glicopeptídeos , Humanos , Staphylococcus aureus Resistente à Meticilina/genética , Polônia , Staphylococcus aureus , beta-Lactamas
4.
Front Plant Sci ; 11: 576581, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33014000

RESUMO

RNA-seq is currently the only method that can provide a comprehensive landscape of circular RNA (circRNAs) in the whole organism and its particular organs. Recent years have brought an increasing number of RNA-seq-based reports on plant circRNAs. Notably, the picture they revealed is questionable and depends on the applied circRNA identification and quantification techniques. In consequence, little is known about the biogenesis and functions of circRNAs in plants. In this work, we tested two experimental and six bioinformatics procedures of circRNA analysis to determine the optimal approach for studying the profiles of circRNAs in Arabidopsis thaliana. Then using the optimized strategy, we determined the accumulation of circular and corresponding linear transcripts in plant seedlings and organs. We observed that only a small fraction of circRNAs was reproducibly generated. Among them, two groups of circRNAs were discovered: ubiquitous and organ-specific. The highest number of circRNAs with significantly increased accumulation in comparison to other organs/seedlings was found in roots. The circRNAs in seedlings, leaves and flowers originated mainly from genes involved in photosynthesis and the response to stimulus. The levels of circular and linear transcripts were not correlated. Although RNase R treatment enriches the analyzed RNA samples in circular transcripts, it may also have a negative impact on the stability of some of the circRNAs. We also showed that the normalization of NGS data by the library size is not proper for circRNAs quantification. Alternatively, we proposed four other normalization types whose accuracy was confirmed by ddPCR. Moreover, we provided a comprehensive characterization of circRNAs in A. thaliana organs and in seedlings. Our analyses revealed that plant circRNAs are formed in both stochastic and controlled processes. The latter are less frequent and likely engage circRNA-specific mechanisms. Only a few circRNAs were organ-specific. The lack of correlation between the accumulation of linear and circular transcripts indicated that their biogenesis depends on different mechanisms.

5.
Cells ; 9(9)2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32825779

RESUMO

Circular RNAs (circRNAs) are the products of the non-canonical splicing of pre-mRNAs. In contrast to humans and animals, our knowledge of the biogenesis and function of circRNAs in plants is very scarce. To identify proteins involved in plant circRNA generation, we characterized the transcriptomes of 18 Arabidopsis thaliana knockout mutants for genes related to splicing. The vast majority (>90%) of circRNAs were formed in more than one variant; only a small fraction of circRNAs was mutant-specific. Five times more circRNA types were identified in cbp80 and three times more in c2h2 mutants than in the wild-type. We also discovered that in cbp80, c2h2 and flk mutants, the accumulation of circRNAs was significantly increased. The increased accumulation of circular transcripts was not accompanied by corresponding changes in the accumulation of linear transcripts. Our results indicate that one of the roles of CBP80, C2H2 and FLK in splicing is to ensure the proper order of the exons. In the absence of one of the above-mentioned factors, the process might be altered, leading to the production of circular transcripts. This suggests that the transition toward circRNA production can be triggered by factors sequestering these proteins. Consequently, the expression of linear transcripts might be regulated through circRNA production.


Assuntos
Arabidopsis/metabolismo , Splicing de RNA/genética , RNA Circular/genética , Animais , Arabidopsis/genética , Humanos
6.
BMC Genomics ; 21(1): 402, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32539695

RESUMO

BACKGROUND: Recent advances in the next-generation sequencing (NGS) allowed the metagenomic analyses of DNA from many different environments and sources, including thousands of years old skeletal remains. It has been shown that most of the DNA extracted from ancient samples is microbial. There are several reports demonstrating that the considerable fraction of extracted DNA belonged to the bacteria accompanying the studied individuals before their death. RESULTS: In this study we scanned 344 microbiomes from 1000- and 2000- year-old human teeth. The datasets originated from our previous studies on human ancient DNA (aDNA) and on microbial DNA accompanying human remains. We previously noticed that in many samples infection-related species have been identified, among them Tannerella forsythia, one of the most prevalent oral human pathogens. Samples containing sufficient amount of T. forsythia aDNA for a complete genome assembly were selected for thorough analyses. We confirmed that the T. forsythia-containing samples have higher amounts of the periodontitis-associated species than the control samples. Despites, other pathogens-derived aDNA was found in the tested samples it was too fragmented and damaged to allow any reasonable reconstruction of these bacteria genomes. The anthropological examination of ancient skulls from which the T. forsythia-containing samples were obtained revealed the pathogenic alveolar bone loss in tooth areas characteristic for advanced periodontitis. Finally, we analyzed the genetic material of ancient T. forsythia strains. As a result, we assembled four ancient T. forsythia genomes - one 2000- and three 1000- year-old. Their comparison with contemporary T. forsythia genomes revealed a lower genetic diversity within the four ancient strains than within contemporary strains. We also investigated the genes of T. forsythia virulence factors and found that several of them (KLIKK protease and bspA genes) differ significantly between ancient and modern bacteria. CONCLUSIONS: In summary, we showed that NGS screening of the ancient human microbiome is a valid approach for the identification of disease-associated microbes. Following this protocol, we provided a new set of information on the emergence, evolution and virulence factors of T. forsythia, the member of the oral dysbiotic microbiome.


Assuntos
Restos Mortais/microbiologia , Fósseis/microbiologia , Microbioma Gastrointestinal , Boca/microbiologia , Tannerella forsythia/genética , Tannerella forsythia/patogenicidade , Fatores de Virulência/genética , Genoma Bacteriano , Genômica , Humanos , Metagenoma , Periodontite/microbiologia , Periodonto/microbiologia , Dente/microbiologia
7.
Water Res ; 170: 115277, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31756613

RESUMO

The emergence and spread of resistance to antibiotics among bacteria is the most serious global threat to public health in recent and coming decades. In this study, we characterized qualitatively and quantitatively ß-lactamase and carbapenemase genes in the wastewater resistome of Central Wastewater Treatment Plant in Kozieglowy, Poland. The research concerns determination of the frequency of genes conferring resistance to ß-lactam and carbapenem antibiotics in the genomes of culturable bacteria, as well as in the wastewater metagenome at three stages of treatment: raw sewage, aeration tank, and final effluent. In the final effluent we found bacteria with genes that pose the greatest threat to public health, including genes of extended spectrum ß-lactamases - blaCTX-M, carbapenemases - blaNDM, blaVIM, blaGES, blaOXA-48, and showed that during the wastewater treatment their frequency increased. Moreover, the wastewater treatment process leads to significant increase in the relative abundance of blaTEM and blaGES genes and tend to increase the relative abundance of blaCTX-M, blaSHV and blaOXA-48 genes in the effluent metagenome. The biodiversity of bacterial populations increased during the wastewater treatment and there was a correlation between the change in the composition of bacterial populations and the variation of relative abundance of ß-lactamase and carbapenemase genes. PCR-based quantitative metagenomic analysis combined with analyses based on culture methods provided significant information on the routes of ARBs and ARGs spread through WWTP. The limited effectiveness of wastewater treatment processes in the elimination of antibiotic-resistant bacteria and resistance genes impose the need to develop an effective strategy and implement additional methods of wastewater disinfection, in order to limit the increase and the spread of antibiotic resistance in the environment.


Assuntos
Metagenoma , Águas Residuárias , Antibacterianos , Proteínas de Bactérias , Polônia , beta-Lactamases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA