Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Dev Biol ; 388(2): 170-80, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24525297

RESUMO

During mammalian spermatogenesis, the diploid spermatogonia mature into haploid spermatozoa through a highly controlled process of mitosis, meiosis and post-meiotic morphological remodeling (spermiogenesis). Despite important progress made in this area, the molecular mechanisms underpinning this transformation are poorly understood. Our analysis of the expression and function of the putative serine-threonine kinase Fused (Fu) provides critical insight into key steps in spermatogenesis. In this report, we demonstrate that conditional inactivation of Fu in male germ cells results in infertility due to diminished sperm count, abnormal head shaping, decapitation and motility defects of the sperm. Interestingly, mutant flagellar axonemes are intact but exhibit altered periaxonemal structures that affect motility. These data suggest that Fu plays a central role in shaping the sperm head and controlling the organization of the periaxonemal structures in the flagellum. We show that Fu localizes to multiple tubulin-containing or microtubule-organizing structures, including the manchette and the acrosome-acroplaxome complex that are involved in spermatid head shaping. In addition, Fu interacts with the outer dense fiber protein Odf1, a major component of the periaxonemal structures in the sperm flagellum, and Kif27, which is detected in the manchette. We propose that disrupted Fu function in these structures underlies the head and flagellar defects in Fu-deficient sperm. Since a majority of human male infertility syndromes stem from reduced sperm motility and structural defects, uncovering Fu׳s role in spermiogenesis provides new insight into the causes of sterility and the biology of reproduction.


Assuntos
Proteínas Serina-Treonina Quinases/metabolismo , Cabeça do Espermatozoide , Espermatogênese , Animais , Masculino , Camundongos , Camundongos Transgênicos
2.
Dev Dyn ; 242(11): 1307-19, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23907739

RESUMO

BACKGROUND: Motile cilia on the inner lining of the oviductal epithelium play a central role in ovum transport toward the uterus and subsequent fertilization by sperm. While the basic ultrastructure of 9+2 motile cilia (nine peripheral microtubule doublets surrounding a central pair) has been characterized, many important steps of ciliogenesis remain poorly understood. RESULTS: Our previous studies on mammalian Fused (Fu) (Stk36), a putative serine-threonine kinase, reveal a critical function of Fu in central pair construction and cilia orientation of motile cilia that line the tracheal and ependymal epithelia. These findings identify a novel regulatory component for these processes. In this study, we show that Fu is expressed in the multi-ciliated oviductal epithelium in several vertebrates, suggesting a conserved function of Fu in the oviduct. In support of this, analysis of Fu-deficient mouse oviducts uncovers a similar role of Fu in central pair construction and cilia orientation. We also demonstrate that Fu localizes to motile cilia and physically associates with kinesin Kif27 located at the cilium base and known central pair components Spag16 and Pcdp1. CONCLUSIONS: Our results delineate a novel pathway for central pair apparatus assembly and add important insight to the biogenesis and function of oviductal motile cilia.


Assuntos
Cílios/metabolismo , Oviductos/embriologia , Oviductos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Linhagem Celular , Cílios/ultraestrutura , Feminino , Humanos , Hibridização In Situ , Mamíferos/embriologia , Mamíferos/metabolismo , Camundongos , Camundongos Mutantes , Microscopia Eletrônica de Transmissão , Proteínas Serina-Treonina Quinases/genética
3.
Curr Opin Genet Dev ; 23(4): 429-37, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23725801

RESUMO

The unexpected connection between cilia and signaling is one of the most exciting developments in cell biology in the past decade. In particular, the Hedgehog (Hh) signaling pathway relies on the primary cilium to regulate tissue patterning and homeostasis in vertebrates. A central question is how ciliary localization and trafficking of Hh pathway components lead to pathway activation and regulation. In this review, we discuss recent studies that reveal the roles of ciliary regulators, components and structures in controlling the movement and signaling of Hh players. These findings significantly increase our mechanistic understanding of how the primary cilium facilitates Hh signal transduction and form the basis for further investigations to define the function of cilia in other signaling processes.


Assuntos
Cílios/genética , Proteínas Hedgehog/genética , Transdução de Sinais/genética , Vertebrados/genética , Animais , Movimento Celular/genética , Núcleo Celular , Proteínas Hedgehog/metabolismo , Humanos , Transporte Proteico , Vertebrados/crescimento & desenvolvimento
4.
Sci Signal ; 5(238): pe35, 2012 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-22912492

RESUMO

The Hedgehog (Hh) family of secreted proteins governs the development of numerous tissues by regulating the activity of the Gli family of transcription factors. Emerging evidence shows that Hh also functions as a chemoattractant in several processes through a noncanonical pathway independent of Gli-mediated transcription. How Hh-responsive cells execute transcriptional versus chemotactic responses is a key issue. Data now suggest that altered subcellular localization of the transducer Smoothened, which functions in both the canonical and noncanonical pathways, is responsible for eliciting distinct Hh outputs.


Assuntos
Quimiotaxia , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/fisiologia , Transcrição Gênica , Animais , Cílios/metabolismo , Proteínas Hedgehog/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Modelos Biológicos , Mutação , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais/genética , Receptor Smoothened , Proteína GLI1 em Dedos de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA