Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Genet ; 14: 1282673, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38028598

RESUMO

Among the diseases threatening maize production in Africa are gray leaf spot (GLS) caused by Cercospora zeina and northern corn leaf blight (NCLB) caused by Exserohilum turcicum. The two pathogens, which have high genetic diversity, reduce the photosynthesizing ability of susceptible genotypes and, hence, reduce the grain yield. To identify population-based quantitative trait loci (QTLs) for GLS and NCLB resistance, a biparental population of 230 lines derived from the tropical maize parents CML511 and CML546 and an association mapping panel of 239 tropical and sub-tropical inbred lines were phenotyped across multi-environments in western Kenya. Based on 1,264 high-quality polymorphic single-nucleotide polymorphisms (SNPs) in the biparental population, we identified 10 and 18 QTLs, which explained 64.2% and 64.9% of the total phenotypic variance for GLS and NCLB resistance, respectively. A major QTL for GLS, qGLS1_186 accounted for 15.2% of the phenotypic variance, while qNCLB3_50 explained the most phenotypic variance at 8.8% for NCLB resistance. Association mapping with 230,743 markers revealed 11 and 16 SNPs significantly associated with GLS and NCLB resistance, respectively. Several of the SNPs detected in the association panel were co-localized with QTLs identified in the biparental population, suggesting some consistent genomic regions across genetic backgrounds. These would be more relevant to use in field breeding to improve resistance to both diseases. Genomic prediction models trained on the biparental population data yielded average prediction accuracies of 0.66-0.75 for the disease traits when validated in the same population. Applying these prediction models to the association panel produced accuracies of 0.49 and 0.75 for GLS and NCLB, respectively. This research conducted in maize fields relevant to farmers in western Kenya has combined linkage and association mapping to identify new QTLs and confirm previous QTLs for GLS and NCLB resistance. Overall, our findings imply that genetic gain can be improved in maize breeding for resistance to multiple diseases including GLS and NCLB by using genomic selection.

3.
Fungal Genet Biol ; 149: 103527, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33524555

RESUMO

Cercospora zeina is a causal pathogen of gray leaf spot (GLS) disease of maize in Africa. This fungal pathogen exhibits a high genetic diversity in South Africa. However, little is known about the pathogen's population structure in the rest of Africa. In this study, we aimed to assess the diversity and gene flow of the pathogen between major maize producing countries in East and Southern Africa (Kenya, Uganda, Zambia, Zimbabwe, and South Africa). A total of 964 single-spore isolates were made from GLS lesions and confirmed as C.zeina using PCR diagnostics. The other causal agent of GLS, Cercospora zeae-maydis, was absent. Genotyping all the C.zeina isolates with 11 microsatellite markers and a mating-type gene diagnostic revealed (i) high genetic diversity with some population structure between the five African countries, (ii) cryptic sexual recombination, (iii) that South Africa and Kenya were the greatest donors of migrants, and (iv) that Zambia had a distinct population. We noted evidence of human-mediated long-distance dispersal, since four haplotypes from one South African site were also present at five sites in Kenya and Uganda. There was no evidence for a single-entry point of the pathogen into Africa. South Africa was the most probable origin of the populations in Kenya, Uganda, and Zimbabwe. Continuous annual maize production in the tropics (Kenya and Uganda) did not result in greater genetic diversity than a single maize season (Southern Africa). Our results will underpin future management of GLS in Africa through effective monitoring of virulent C.zeina strains.


Assuntos
Cercospora/genética , Cercospora/patogenicidade , Zea mays/microbiologia , África Oriental , Ascomicetos/genética , Resistência à Doença/genética , Fluxo Gênico/genética , Variação Genética/genética , Genética Populacional/métodos , Haplótipos/genética , Repetições de Microssatélites/genética , Doenças das Plantas/microbiologia , Locos de Características Quantitativas/genética , África do Sul
4.
Fungal Genet Biol ; 125: 36-44, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30659907

RESUMO

Gray leaf spot (GLS) is an important foliar disease of maize. This disease, caused by Cercospora zeina, is prevalent in both smallholder and commercial maize farms in South Africa. Notably, smallholder practices are geared towards conservation agriculture, planting diverse maize genotypes within a field and avoiding chemical control. This study examined the population genetic structure of 129 C. zeina isolates from three smallholder farm sites in KwaZulu-Natal in South Africa using 13 microsatellite markers. These were analysed, together with 239 isolates previously analysed from four commercial farms in the same province, to determine whether farming systems influence the genetic diversity of C.zeina. In addition, we wanted to determine whether the smallholder farming system harboured a greater diversity of C.zeina haplotypes due to lack of chemical spraying of these crops. Overall, farming systems exhibited partial, but significant, population differentiation, contributing 10% of the genetic variation observed. A 16% genetic variation conferred between KwaNxamalala (smallholder) and Cedara (commercial) areas that are in close proximity, confirmed this. Private alleles accounted for 29% of the 52 alleles observed in smallholder farms. Smallholder farms harboured a higher gene and genotypic diversity, with a clonal fraction of only 13% compared to 32% in commercial farms. Mating type ratios indicative of sexual recombination and lower linkage disequilibrium in most smallholder populations were consistent with higher levels of diversity. This study suggests that commercial farming practices, such as fungicides and monoculture crop planting, may result in a narrower genetic diversity of the pathogen that is then propagated by asexual reproduction. In contrast, management of GLS disease in smallholder farms should consider the greater diversity of pathogen genotypes, especially if future research shows that this equates to a greater diversity of pathogenicity alleles.


Assuntos
Ascomicetos/genética , Genética Populacional , Doenças das Plantas/genética , Zea mays/microbiologia , Agricultura , Alelos , Ascomicetos/patogenicidade , Produtos Agrícolas , Haplótipos , Humanos , Repetições de Microssatélites/genética , Doenças das Plantas/microbiologia , Locos de Características Quantitativas/genética , Zea mays/genética
5.
Plant Cell Rep ; 35(4): 845-55, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26795144

RESUMO

KEY MESSAGE: Transgenic Nicotiana benthamiana lines with constitutive expression of an Arabidopsis lectin receptor kinase gene (LecRK - I.9 or LecRK - IX.1) show enhanced resistance to Phytophthora pathogens, demonstrating conserved gene functionality after interfamily transfer. In plants, cell surface receptors mediate the first layer of innate immunity against pathogenic microbes. In Arabidopsis several L-type lectin receptor kinases (LecRKs) were previously found to function as Phytophthora resistance components. In this study, we determined the functionality of Arabidopsis LecRK-I.9 or LecRK-IX.1 in Phytophthora resistance when transferred into the Solanaceous plant Nicotiana benthamiana. Multiple transgenic lines were generated for each LecRK gene and molecular analyses revealed variation in transgene copy number, transgene expression levels and LecRK protein accumulation. Infection assays showed that transgenic N. benthamiana plants expressing either Arabidopsis LecRK-I.9 or LecRK-IX.1 are more resistant to Phytophthora capsici and to Phytophthora infestans. These results demonstrate that Arabidopsis LecRK-I.9 and LecRK-IX.1 retained their Phytophthora resistance function when transferred into N. benthamiana. Therefore, these LecRKs have the potential to function as a complementary Phytophthora resistance resource in distantly related plant species next to the canonical Phytophthora resistance genes encoding nucleotide-binding leucine-rich repeat proteins.


Assuntos
Proteínas de Arabidopsis/metabolismo , Resistência à Doença , Genes de Plantas , Nicotiana/genética , Nicotiana/microbiologia , Phytophthora infestans/fisiologia , Doenças das Plantas/microbiologia , Proteínas Quinases/metabolismo , Doenças das Plantas/imunologia , Plantas Geneticamente Modificadas , Nicotiana/anatomia & histologia , Nicotiana/crescimento & desenvolvimento , Transgenes
6.
Genome Biol Evol ; 7(3): 720-34, 2015 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-25635042

RESUMO

The comparative analysis of plant gene families in a phylogenetic framework has greatly accelerated due to advances in next generation sequencing. In this study, we provide an evolutionary analysis of the L-type lectin receptor kinase and L-type lectin domain proteins (L-type LecRKs and LLPs) that are considered as components in plant immunity, in the plant family Brassicaceae and related outgroups. We combine several lines of evidence provided by sequence homology, HMM-driven protein domain annotation, phylogenetic analysis, and gene synteny for large-scale identification of L-type LecRK and LLP genes within nine core-eudicot genomes. We show that both polyploidy and local duplication events (tandem duplication and gene transposition duplication) have played a major role in L-type LecRK and LLP gene family expansion in the Brassicaceae. We also find significant differences in rates of molecular evolution based on the mode of duplication. Additionally, we show that LLPs share a common evolutionary origin with L-type LecRKs and provide a consistent gene family nomenclature. Finally, we demonstrate that the largest and most diverse L-type LecRK clades are lineage-specific. Our evolutionary analyses of these plant immune components provide a framework to support future plant resistance breeding.


Assuntos
Brassicaceae/genética , Evolução Molecular , Duplicação Gênica , Genoma de Planta , Família Multigênica , Proteínas de Plantas/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas de Arabidopsis/classificação , Proteínas de Arabidopsis/genética , Genes Duplicados , Filogenia , Estrutura Terciária de Proteína/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA