Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Brain Sci ; 13(9)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37759842

RESUMO

The concept of migraine with aura (MwA) is a widespread condition that can affect up to 30% of migraine patients and manifests itself as a temporary visual illusion followed by a prolonged headache. It was initially pitched as a neurological disease, and observed that the spread of accompanying electrophysiological waves as part of the condition, which came to be known as cortical spreading depression (CSD). A strong theoretical basis for a link between MwA and CSD has eventually led to knowledge of the dynamics between the pair. In addition to experiment-based observations, mathematical models make an important contribution towards a numerical means of expressing codependent neural-scale manifestations. This provides alternate means of understanding and observing the phenomena while helping to visualize the links between the variables and their magnitude in contributing towards the emanation and dynamic pulsing of the condition. A number of biophysical mechanisms are believed to contribute to the MwA-CSD, spanning ion diffusion, ionic currents of membranes, osmosis, spatial buffering, neurotransmission, gap junctions, metabolic pumping, and synapse connections. As part of this review study, the various mathematical models for the description of the condition are expressed, reviewed, and contrasted, all of which vary in their depth, perspective, and level of information presented. Subsequent to this, the review looked into links between electrophysiological data-driven manifestations from measurements such as EEG and fMRI. While concluding remarks forged a structured pathway in the area on sub-themes that need to be investigated in order to strengthen and robustify the existing models, they include an accounting for inter-personal variability in models, sex and hormonal factors, and age groups, i.e., pediatrics vs. adults.

2.
Front Immunol ; 14: 1190699, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37724103

RESUMO

Background: Cardiorespiratory coupling (CRC) is a physiological phenomenon that reflects the mutual interaction between the cardiac and respiratory control systems. It is mainly associated with efferent vagal activity from the central autonomic network. Few studies have explored the autonomic changes of CRC in preeclampsia, a critical obstetric complication related to possible autonomic dysfunctions and inflammatory disturbances. This study examined the autonomic mechanisms of CRC in women with severe and moderate preeclampsia and healthy controls by applying nonlinear methods based on information theory, such as mutual information (MI) and Renyi's mutual information (RMI) and the linear and nonlinear analysis of the Pulse-Respiration Quotient (PRQ). Methods: We studied three groups of parturient women in the third trimester of pregnancy with a clinical diagnosis of preeclampsia without severe symptoms (P, 38.5 ± 1.4 weeks of pregnancy, n=19), preeclampsia with severe symptoms (SP, 37.5 ± 0.9 weeks of pregnancy, n=22), and normotensive control women (C, 39.1 ± 1.3 weeks of pregnancy, n=20). 10-minutes of abdominal electrocardiograms (ECG) and respiratory signals (RESP) were recorded in all the participants. Subsequently, we obtained the maternal beat-to-beat (RR) and breath-to-breath (BB) time series from ECG and RESP, respectively. The CRC between RR and BB was quantified by nonlinear methods based on information theory, such as MI and RMI, along with the analysis of the novel index of PRQ. Subsequently, we computed the mean PRQ (mPRQ) and the normalized permutation entropy (nPermEn_PRQ) from the PRQ time series generated from BB and RR. In addition, we examined the vagal activity in the three groups by the logarithm of the median of the distribution of the absolute values of successive RR differences (logRSA). Results: The MI and RMI values were significantly lower (p<0.05) in the preeclamptic groups compared to the control group. However, no significant differences were found between the preeclamptic groups. The logRSA and nPermEn_PRQ indices were significantly lower (p<0.05) in SP compared to C and P. Conclusion: Our data suggest that parturient women with severe and mild preeclampsia may manifest an altered cardiorespiratory coupling compared with normotensive control women. Disrupted CRC in severe preeclampsia could be associated with vagal withdrawal and less complex cardiorespiratory dynamics. The difference in vagal activity between the preeclamptic groups may suggest a further reduction in vagal activity associated with the severity of the disease.


Assuntos
Doenças do Sistema Nervoso Autônomo , Hipertensão Induzida pela Gravidez , Pré-Eclâmpsia , Gravidez , Humanos , Feminino , Pré-Eclâmpsia/diagnóstico , Sistema Nervoso Autônomo , Nervo Vago
3.
Sensors (Basel) ; 23(9)2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37177652

RESUMO

The condition of a joint in a human being is prone to wear and several pathologies, particularly in the elderly and athletes. Current means towards assessing the overall condition of a joint to assess for a pathology involve using tools such as X-ray and magnetic resonance imaging, to name a couple. These expensive methods are of limited availability in resource-constrained environments and pose the risk of radiation exposure to the patient. The prospect of acoustic emissions (AEs) presents a modality that can monitor the joints' conditions passively by recording the high-frequency stress waves emitted during their motion. One of the main challenges associated with this sensing method is decoding and linking acquired AE signals to their source event. In this paper, we investigate AEs' use to identify five kinds of joint-wear pathologies using a contrast of expert-based handcrafted features and unsupervised feature learning via deep wavelet decomposition (DWS) alongside 12 machine learning models. The results showed an average classification accuracy of 90 ± 7.16% and 97 ± 3.77% for the handcrafted and DWS-based features, implying good prediction accuracies across the various devised approaches. Subsequent work will involve the potential application of regressions towards estimating the associated stage and extent of a wear condition where present, which can form part of an online system for the condition monitoring of joints in human beings.


Assuntos
Aprendizado Profundo , Humanos , Idoso , Aprendizado de Máquina , Imageamento por Ressonância Magnética , Acústica
4.
Healthc Technol Lett ; 10(1-2): 11-22, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37077881

RESUMO

Preterm birth is a global epidemic affecting millions of mothers across different ethnicities. The cause of the condition remains unknown but has recognised health-based implications, in addition to financial and economic ones. Machine Learning methods have enabled researchers to combine datasets using uterine contraction signals with various forms of prediction machines to improve awareness of the likelihood of premature births. This work investigates the feasibility of enhancing these prediction methods using physiological signals including uterine contractions, and foetal and maternal heart rate signals, for a population of south American women in active labour. As part of this work, the use of the Linear Series Decomposition Learner (LSDL) was seen to lead to an improvement in the prediction accuracies of all models, which included supervised and unsupervised learning models. The results from the supervised learning models showed high prediction metrics upon the physiological signals being pre-processed by the LSDL for all variations of the physiological signals. The unsupervised learning models showed good metrics for the partitioning of Preterm/Term labour patients from their uterine contraction signals but produced a comparatively lower set of results for the various kinds of heart rate signals investigated.

5.
Front Neurosci ; 17: 1018037, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36908798

RESUMO

Introduction: Electromyogram-based pattern recognition (EMG-PR) has been widely considered an essentially intuitive control method for multifunctional upper limb prostheses. A crucial aspect of the scheme is the EMG signal recording duration (SRD) from which requisite motor tasks are characterized per time, impacting the system's overall performance. For instance, lengthy SRD inevitably introduces fatigue (that alters the muscle contraction patterns of specific limb motions) and may incur high computational costs in building the motion intent decoder, resulting in inadequate prosthetic control and controller delay in practical usage. Conversely, relatively shorter SRD may lead to reduced data collection durations that, among other advantages, allow for more convenient prosthesis recalibration protocols. Therefore, determining the optimal SRD required to characterize limb motion intents adequately that will aid intuitive PR-based control remains an open research question. Method: This study systematically investigated the impact and generalizability of varying lengths of myoelectric SRD on the characterization of multiple classes of finger gestures. The investigation involved characterizing fifteen classes of finger gestures performed by eight normally limb subjects using various groups of EMG SRD including 1, 5, 10, 15, and 20 s. Two different training strategies including Between SRD and Within-SRD were implemented across three popular machine learning classifiers and three time-domain features to investigate the impact of SRD on EMG-PR motion intent decoder. Result: The between-SRD strategy results which is a reflection of the practical scenario showed that an SRD greater than 5 s but less than or equal to 10 s (>5 and < = 10 s) would be required to achieve decent average finger gesture decoding accuracy for all feature-classifier combinations. Notably, lengthier SRD would incur more acquisition and implementation time and vice-versa. In inclusion, the study's findings provide insight and guidance into selecting appropriate SRD that would aid inadequate characterization of multiple classes of limb motion tasks in PR-based control schemes for multifunctional prostheses.

6.
Diagnostics (Basel) ; 12(9)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36140500

RESUMO

Prostate cancer is a widespread form of cancer that affects patients globally and is challenging to diagnose, especially in its early stages. The common means of diagnosing cancer involve mostly invasive methods, such as the use of patient's blood as well as digital biopsies, which are relatively expensive and require a considerable amount of expertise. Studies have shown that various cancer biomarkers can be present in urine samples from patients who have prostate cancers; this paper aimed to leverage this information and investigate this further by using urine samples from a group of patients alongside FTIR analysis for the prediction of prostate cancer. This investigation was carried out using three sets of data where all spectra were preprocessed with the linear series decomposition learner (LSDL) and post-processed using signal processing methods alongside a contrast across nine machine-learning models, the results of which showcased that the proposed modeling approach carries potential to be used for clinical prediction of prostate cancer. This would allow for a much more affordable and high-throughput means for active prediction and associated care for patients with prostate cancer. Further investigations on the prediction of cancer stage (i.e., early or late stage) were carried out, where high prediction accuracy was obtained across the various metrics that were investigated, further showing the promise and capability of urine sample analysis alongside the proposed and presented modeling approaches.

7.
Healthc Technol Lett ; 9(3): 43-53, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35662750

RESUMO

Hypnotic and sedative anaesthetic agents are employed during multiple medical interventions to prevent patient awareness. Careful titration of agent dosing is required to avoid negative side effects; the accuracy thereof may be improved by Depth of Anaesthesia Monitoring. This work investigates the potential of a patient specific depth monitoring prediction using electroencephalography recorded neural oscillation from the frontal lobe of 10 patients during sedation, where a comparison of the prediction accuracy was made across five different approaches to post-processing; Noise Assisted-Empirical Mode Decomposition, the Raw Signal, Linear Series Decomposition Learner, Deep Wavelet Scattering and Deep Learning features. These methods towards anaesthesia depth prediction were investigated using the Bispectral Index as ground truth, where it was seen that the Raw Signal, enhanced feature set and a low complexity classification model (Linear Discriminant Analysis) provided the best classification accuracy, in the region of 85.65 % ±10.23 % across the 10 subjects. Subsequent work in this area would now build on these results and validate the best performing methods on a wider cohort of patients, investigate means of continuous DoA estimation using regressions, and also feature optimisation exercises in order to further streamline and reduce the computation complexity of the designed model.

8.
J Neural Eng ; 2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34111849

RESUMO

BACKGROUND AND OBJECTIVE: Non-invasive multichannel Electroencephalography (EEG) recordings provide an alternative source of neural information from which motor imagery (MI) patterns associated with limb movement intent can be decoded for use as control inputs for rehabilitation robots. The presence of multiple inherent dynamic artifacts in EEG signals, however, poses processing challenges for brain-computer interface (BCI) systems. A large proportion of the existing EEG signal preprocessing methods focus on isolating single artifact per time from an ensemble of EEG trials and require calibration and/or reference electrodes, resulting in increased complexity of their application to MI-EEG controlled rehabilitation devices in practical settings. Also, a few existing multi-artifacts removal methods though explored in other domains, they have rarely been investigated in the space of MI-EEG signals for multiple artifacts cancellation in a simultaneous manner. APPROACH: Building on the premise of previous works, this study propose a semi-automatic EEG preprocessing method that combines Generalized Eigenvalue Decomposition driven by low-rank approximation and a Multi-channel Wiener Filter (GEVD-MWF) that employs a learning technique for simultaneous elimination of multiple artifacts from MI-EEG signals. The proposed method is applied to remove multiple artifacts from 64-channel EEG signals recorded from transhumeral amputees while they performed distinct classes of upper limb MI tasks before decoding their movement intent using a selection of features and machine learning algorithms. MAIN RESULTS: Experimental results show that the proposed GEVD-MWF method yields significant improvements in MI decoding accuracies, in the range of 13.23%-41.21% compared to four existing popular artifact removal algorithms. Further investigation revealed that the GEVD-MWF approach enabled accuracies in the range of 90.44% - 99.67% using "single trial" EEG recordings, which could eliminate the need to record and process large ensembles of EEG trials as commonly required in some existing approaches. Additionally, using a variant of the sequential forward floating selection algorithm, a subset of 9 channels was used to obtain a decoding accuracy of 93.73%±1.58%. SIGNIFICANCE: Given its improved performance, reduced data requirements, and feasibility with few channels, the proposed GEVD-MWF could potentially spur the development of effective real-time control strategies for multi-degree of freedom EEG-based miniaturized rehabilitation robotic interfaces.

9.
J Med Eng Technol ; 45(2): 115-128, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33475039

RESUMO

This paper presents a review of a number of bio-sensing methods for gesture intent signal acquisition in control tasks for upper-limb prosthesis. The paper specifically provides a breakdown of the control task in myoelectric prosthesis, and in addition, highlights and describes the importance of the acquisition of a high-quality bio-signal. The paper also describes commonly used invasive and non-invasive brain and muscle machine interfaces such as electroencephalography, electrocorticography, electroneurography, surface electromyography, sonomyography, mechanomyography, near infra-red, force sensitive resistance/pressure, and magnetoencephalography. Each modality is reviewed based on its operating principle and limitations in gesture recognition, followed by respective advantages and disadvantages. Also described within this paper, are multimodal sensing approaches, which involve data fusion of information from various sensing modalities for an enhanced neuromuscular bio-sensing source. Using a semi-systematic review methodology, we are able to derive a novel tabular approach towards contrasting the various strengths and weaknesses of the reviewed bio-sensing methods towards gesture recognition in a prosthesis interface. This would allow for a streamlined method of down selection of an appropriate bio-sensor given specific prosthesis design criteria and requirements. The paper concludes by highlighting a number of research areas that require more work for strides to be made towards improving and enhancing the connection between man and machine as it concerns upper-limb prosthesis. Such areas include classifier augmentation for gesture recognition, filtering techniques for sensor disturbance rejection, feeling of tactile sensations with an artificial limb.


Assuntos
Membros Artificiais , Técnicas Biossensoriais , Reconhecimento Automatizado de Padrão , Braço , Encéfalo/fisiologia , Interfaces Cérebro-Computador , Eletrodiagnóstico , Gestos , Humanos , Músculos/fisiologia
10.
Sensors (Basel) ; 18(3)2018 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-29534052

RESUMO

The final phase of powder production typically involves a mixing process where all of the particles are combined and agglomerated with a binder to form a single compound. The traditional means of inspecting the physical properties of the final product involves an inspection of the particle sizes using an offline sieving and weighing process. The main downside of this technique, in addition to being an offline-only measurement procedure, is its inability to characterise large agglomerates of powders due to sieve blockage. This work assesses the feasibility of a real-time monitoring approach using a benchtop test rig and a prototype acoustic-based measurement approach to provide information that can be correlated to product quality and provide the opportunity for future process optimisation. Acoustic emission (AE) was chosen as the sensing method due to its low cost, simple setup process, and ease of implementation. The performance of the proposed method was assessed in a series of experiments where the offline quality check results were compared to the AE-based real-time estimations using data acquired from a benchtop powder free flow rig. A designed time domain based signal processing method was used to extract particle size information from the acquired AE signal and the results show that this technique is capable of estimating the required ratio in the washing powder compound with an average absolute error of 6%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA