Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 24(1): 587, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37794325

RESUMO

BACKGROUND: Developing high yielding varieties is a major challenge for breeders tackling the challenges of climate change in agriculture. The panicle (inflorescence) architecture of rice is one of the key components of yield potential and displays high inter- and intra-specific variability. The genus Oryza features two different crop species: Asian rice (Oryza sativa L.) and the African rice (O. glaberrima Steud.). One of the main morphological differences between the two independently domesticated species is the structure (or complexity) of the panicle, with O. sativa displaying a highly branched panicle, which in turn produces a larger number of grains than that of O. glaberrima. The gene regulatory network that governs intra- and interspecific panicle diversity is still under-studied. RESULTS: To identify genetic factors linked to panicle architecture diversity in the two species, we used a set of 60 Chromosome Segment Substitution Lines (CSSLs) issued from third generation backcross (BC3DH) and carrying genomic segments from O. glaberrima cv. MG12 in the genetic background of O. sativa Tropical Japonica cv. Caiapó. Phenotypic data were collected for rachis and primary branch length, primary, secondary and tertiary branch number and spikelet number. A total of 15 QTLs were localized on chromosomes 1, 2, 3, 7, 11 and 12, QTLs associated with enhanced secondary and tertiary branch numbers were detected in two CSSLs. Furthermore, BC4F3:5 lines carrying different combinations of substituted segments were produced to decipher the effects of the identified QTL regions on variations in panicle architecture. A detailed analysis of phenotypes versus genotypes was carried out between the two parental genomes within these regions in order to understand how O. glaberrima introgression events may lead to alterations in panicle traits. CONCLUSION: Our analysis led to the detection of genomic variations between O. sativa cv. Caiapó and O. glaberrima cv. MG12 in regions associated with enhanced panicle traits in specific CSSLs. These regions contain a number of key genes that regulate panicle development in O. sativa and their interspecific genomic variations may explain the phenotypic effects observed.


Assuntos
Oryza , Introgressão Genética , Locos de Características Quantitativas , Fenótipo , Genômica
2.
G3 (Bethesda) ; 13(10)2023 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-37535690

RESUMO

African rice (Oryza glaberrima Steud), a short-day cereal crop closely related to Asian rice (Oryza sativa L.), has been cultivated in Sub-Saharan Africa for ∼ 3,000 years. Although less cultivated globally, it is a valuable genetic resource in creating high-yielding cultivars that are better adapted to diverse biotic and abiotic stresses. While inflorescence architecture, a key trait for rice grain yield improvement, has been extensively studied in Asian rice, the morphological and genetic determinants of this complex trait are less understood in African rice. In this study, using a previously developed association panel of 162 O. glaberrima accessions and new SNP variants characterized through mapping to a new version of the O. glaberrima reference genome, we conducted a genome-wide association study of four major morphological panicle traits. We have found a total of 41 stable genomic regions that are significantly associated with these traits, of which 13 co-localized with previously identified QTLs in O. sativa populations and 28 were unique for this association panel. Additionally, we found a genomic region of interest on chromosome 3 that was associated with the number of spikelets and primary and secondary branches. Within this region was localized the O. sativa ortholog of the PHYTOCHROME B gene (Oglab_006903/OgPHYB). Haplotype analysis revealed the occurrence of natural sequence variants at the OgPHYB locus associated with panicle architecture variation through modulation of the flowering time phenotype, whereas no equivalent alleles were found in O. sativa. The identification in this study of genomic regions specific to O. glaberrima indicates panicle-related intra-specific genetic variation in this species, increasing our understanding of the underlying molecular processes governing panicle architecture. Identified candidate genes and major haplotypes may facilitate the breeding of new African rice cultivars with preferred panicle traits.


Assuntos
Oryza , Oryza/genética , Estudo de Associação Genômica Ampla , Alelos , Melhoramento Vegetal , Locos de Características Quantitativas , Grão Comestível/genética
3.
Front Plant Sci ; 12: 692955, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34305984

RESUMO

Grain yield, which is one of the most important traits in rice breeding, is controlled in part by panicle branching patterns. Numerous genes involved in the control of panicle architecture have been identified through mutant and QTL characterization. Previous studies suggested the importance of several AP2/ERF transcription factor-encoding genes in the control of panicle development, including the AINTEGUMENTA/PLETHORA-like (euANT/PLT) genes. The ANT gene was specifically considered to be a key regulator of shoot and floral development in Arabidopsis thaliana. However, the likely importance of paralogous euANT/PLT genes in the regulation of meristem identities and activities during panicle architecture development has not to date been fully addressed in rice. In this study, we observed that the rice euANT/PLT genes displayed divergent temporal expression patterns during the branching stages of early panicle development, with spatial localization of expression in meristems for two of these genes. Moreover, a functional analysis of rice ANT-related genes using genome editing revealed their importance in the control of panicle architecture, through the regulation of axillary meristem (AM) establishment and meristem fate transition. Our study suggests that the paralogous euANT/PLT genes have become partially diversified in their functions, with certain opposing effects, since they arose from ancestral gene duplication events, and that they act in regulating the branching of the rice panicle.

4.
Int J Mol Sci ; 21(20)2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33066600

RESUMO

Awns, which are either bristles or hair-like outgrowths of lemmas in the florets, are one of the typical morphological characteristics of grass species. These stiff structures contribute to grain dispersal and burial and fend off animal predators. However, their phenotypic and genetic associations with traits deciding potential yield and quality are not fully understood. Awns appear to improve photosynthesis, provide assimilates for grain filling, thus contributing to the final grain yield, especially under temperature- and water-stress conditions. Long awns, however, represent a competing sink with developing kernels for photosynthates, which can reduce grain yield under favorable conditions. In addition, long awns can hamper postharvest handling, storage, and processing activities. Overall, little is known about the elusive role of awns, thus, this review summarizes what is known about the effect of awns on grain yield and biomass yield, grain nutritional value, and forage-quality attributes. The influence of awns on the agronomic performance of grasses seems to be associated with environmental and genetic factors and varies in different stages of plant development. The contribution of awns to yield traits and quality features previously documented in major cereal crops, such as rice, barley, and wheat, emphasizes that awns can be targeted for yield and quality improvement and may advance research aimed at identifying the phenotypic effects of morphological traits in grasses.


Assuntos
Grão Comestível/genética , Poaceae/genética , Característica Quantitativa Herdável , Biomassa , Grão Comestível/anatomia & histologia , Grão Comestível/crescimento & desenvolvimento , Melhoramento Vegetal , Poaceae/anatomia & histologia , Poaceae/crescimento & desenvolvimento
5.
Plants (Basel) ; 8(12)2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31805733

RESUMO

: Awns, needle-like structures formed on the distal of the lemmas in the florets, are of interest because of their essential roles in seed dispersal, germination and photosynthesis. Previous research has reported the potential benefits of awns in major cereal grasses, yet reports on the agronomic and economic implications of awn length variation in forage grasses remain scarce. This study investigated the variation of awn length among 20 Siberian wildrye populations and the effect of awn length on seed yield and yield components. This work then studied the impact of awn length on seed dispersal and germination. The analyses indicated a high level of awn length variation among populations. Awn length showed a significant influence on harvested seed yield per plant (p < 0.05) mostly driven by interactions between awn length and the majority of seed yield components. Principal component analysis clearly revealed that the final impact of awn length on seed yield depends on the balance of its positive and negative effects on traits determining seed yield. Furthermore, awn length tended to increase seed dispersal distance, although little diversity in the nature of this progression was observed in some populations. Awn length exhibited a significant relationship (p < 0.05) with germination percentage. It also tended to shorten germination duration, although this interaction was not statistically significant. Collectively, these results provide vital information for breeding and agronomic programs aiming to maintain yield in grasses. This is the first report to demonstrate in Siberian wildrye the agronomic impacts of awn length variation.

6.
Genes (Basel) ; 10(8)2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31366144

RESUMO

The identification of biological mechanisms underlying the development of complex quantitative traits, including those that contribute to plant architecture, yield and quality potential, and seed dispersal, is a major focus in the evolutionary biology and plant breeding. The awn, a bristle-like extension from the lemma in the floret, is one of the distinct morphological and physiological traits in grass species. Awns are taught as an evolutionary trait assisting seed dispersal and germination and increasing photosynthesis. Awn development seems to be complex process, involving dramatic phenotypic and molecular changes. Although recent advances investigated the underlying morphological and molecular genetic factors of awn development, there is little agreement about how these factors interact during awn formation and how this interaction affects variation of awn morphology. Consequently, the developmental sequence of the awn is not yet well understood. Here, we review awn morphological and histological features, awn development pathways, and molecular processes of awn development. We argue that morphological and molecular genetic mechanisms of awn development previously studied in major cereal crops, such as barley, wheat, and rice, offered intriguing insights helping to characterize this process in a comparative approach. Applying such an approach will aid to deeply understand factors involved in awn development in grass species.


Assuntos
Flores/anatomia & histologia , Poaceae/genética , Característica Quantitativa Herdável , Flores/genética , Flores/crescimento & desenvolvimento , Desenvolvimento Vegetal , Poaceae/anatomia & histologia , Poaceae/crescimento & desenvolvimento
7.
BMC Plant Biol ; 19(1): 235, 2019 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-31159732

RESUMO

BACKGROUND: Elymus L. is the largest genus in the tribe Triticeae Dumort., encompassing approximately 150 polyploid perennial species widely distributed in the temperate regions of the world. It is considered to be an important gene pool for improving cereal crops. However, a shortage of molecular marker limits the efficiency and accuracy of genetic breeding for Elymus species. High-throughput transcriptome sequencing data is essential for gene discovery and molecular marker development. RESULTS: We obtained the transcriptome dataset of E. sibiricus, the type species of the genus Elymus, and identified a total of 8871 putative EST-SSRs from 6685 unigenes. Trinucleotides were the dominant repeat motif (4760, 53.66%), followed by dinucleotides (1993, 22.47%) and mononucleotides (1876, 21.15%). The most dominant trinucleotide repeat motif was CCG/CGG (1119, 23.5%). Sequencing of PCR products showed that the sequenced alleles from different Elymus species were homologous to the original SSR locus from which the primer was designed. Different types of tri-repeats as abundant SSR motifs were observed in repeat regions. Two hundred EST-SSR primer pairs were designed and selected to amplify ten DNA samples of Elymus species. Eighty-seven pairs of primer (43.5%) generated clear and reproducible bands with expected size, and showed good transferability across different Elymus species. Finally, thirty primer pairs successfully amplified ninety-five accessions of seventeen Elymus species, and detected significant amounts of polymorphism. In general, hexaploid Elymus species with genomes StStHHYY had a relatively higher level of genetic diversity (H = 0.219, I = 0.330, %P = 63.7), while tetraploid Elymus species with genomes StStYY had low level of genetic diversity (H = 0.182, I = 0.272, %P = 50.4) in the study. The cluster analysis showed that all ninety-five accessions were clustered into three major clusters. The accessions were grouped mainly according to their genomic components and origins. CONCLUSIONS: This study demonstrated that transcriptome sequencing is a fast and cost-effective approach to molecular marker development. These EST-SSR markers developed in this study are valuable tools for genetic diversity, evolutionary, and molecular breeding in E. sibiricus, and other Elymus species.


Assuntos
Elymus/classificação , Elymus/genética , Etiquetas de Sequências Expressas , Variação Genética , Repetições de Microssatélites , Marcadores Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Proteínas de Plantas/análise , RNA de Plantas/análise , Alinhamento de Sequência , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA